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Correlation lengths of the repulsive one-dimensional Bose gas
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We investigate the large-distance asymptotic behavior of the static density-density and field-field correlation
functions in the one-dimensional Bose gas at finite temperature. The asymptotic expansions of the Bose gas
correlators are obtained performing a specific continuum limit in the similar low-temperature expansions of the
longitudinal and transversal correlation functions of the XXZ spin chain. In the lattice system the correlation
lengths are computed as ratios of the largest and next-largest eigenvalues of the XXZ spin chain quantum
transfer matrix. In both cases, lattice and continuum, the correlation lengths are expressed in terms of solutions
of Yang-Yang type [C. N. Yang and C. P. Yang, J. Math. Phys. 10, 1151 (1969)] nonlinear integral equations
which are easily implementable numerically.
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I. INTRODUCTION

In the last decade we have witnessed significant advances
in the field of trapped ultracold gases [1] opening new
avenues for the investigation of low-dimensional physical
systems which can be well approximated by integrable models.
The paradigmatic example is the Bose gas with contact
interaction [2], also known as the Lieb-Liniger model, whose
experimental realization [3–8] has spurred renewed interest
in computing physical properties which are experimentally
accessible. In particular, the correlation functions, which can
be measured using interference [9–12], analysis of particle
losses [6,13], photoassociation [14], Bragg and photoemission
spectroscopy [15–19], density fluctuation statistics [20–23],
time-of-flight correlation statistics [24], and scanning electron
microscopy [25] are extremely important.

Despite the integrability of the model the calculation of
the correlation functions is an extremely challenging problem
which remains unsolved to this day. Significant simplifications
occur in the case of infinite repulsion when the system is
equivalent to free fermions. In this case the correlators can
be expressed as Fredholm or Toeplitz determinants and the
asymptotic behavior can be extracted from the solution of an
associated Riemann-Hilbert problem [26–34]. Similar results,
albeit in a nonrigorous fashion, can be derived using the replica
method [35].

The introduction of the algebraic Bethe ansatz (ABA)
provided the necessary tools to tackle the harder problem of
calculating the correlation functions of integrable models away
from the free fermion point [36–39]. At zero temperature, the
members of the Lyon group (Kitanine, Kozlowski, Maillet,
Slavnov, and Terras), making use of the results obtained
in [40–44] derived in [45] the asymptotic behavior of the
static density correlators in the repulsive Lieb-Liniger model
and similar results for the longitudinal correlation of the
XXZ spin chain. The large-distance and long-time asymptotic
analysis of the density-density and field-field correlators was
performed in [46–48]. In all cases these exact results reproduce
and generalize the predictions of the Tomonaga-Luttinger-
liquid–conformal-field-theory (TLL-CFT) approach [49–51].
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A method of determining the “nonuniversal” prefactors
appearing in the TLL-CFT expansion was introduced in
[52,53] and, also, very recently, in [54].

The temperature dependent correlation functions of a
system characterized by a Hamiltonian H are defined as

〈O〉T =
∑〈�|O|�〉e−E/T∑

e−E/T
, (1)

where O is a local operator, the sum is over all the eigenstates
|�〉 of the Hamiltonian, and E their respective energies. The
summation appearing in (1) makes the calculation of tem-
perature dependent correlation functions extremely difficult.
However, in the case of the interacting Bose gas we can
circumvent this problem in two ways. First, it can be shown
(see Chap. I of [39], and references therein), that in the
thermodynamic limit (1) can be replaced by

〈O〉T = 〈�T |O|�T 〉
〈�T |�T 〉 , (2)

where |�T 〉 is any of the eigenstates corresponding to thermal
equilibrium. This allowed the authors of [55,56] to employ
a method similar to the zero temperature analysis performed
in [45] to obtain the asymptotic expansion of the generating
functional of density correlators. The second method utilizes
the quantum transfer matrix (QTM) and the connection
between the XXZ spin chain and the one-dimensional (1D)
Bose gas. Introduced and developed in [57,58], the QTM,
in particular its spectrum, is an extremely important tool
in the investigation of temperature dependent properties of
lattice systems. The free energy of the system is related to
the largest eigenvalue of the QTM [58,59] and the correlation
lengths of the Green’s functions can be obtained as ratios
of the largest and next-largest eigenvalues [59,60]. At the
same time the QTM is a fundamental ingredient in obtaining
multiple integral representations for temperature dependent
correlation functions [61–63]. Even though there is no QTM
equivalent for continuous systems we can use the fact that
the one-dimensional Bose gas can be obtained in a specific
continuum limit of the XXZ spin chain [64,65]. Performing
this continuum limit in the nonlinear integral equations
(NLIEs) characterizing the eigenvalues of the XXZ spin-chain
QTM we will obtain the spectrum of what we will call
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the “continuum” QTM, from which we can calculate the
thermodynamics and the correlation lengths of the continuum
system. It is precisely this method that we will use in this
paper to obtain the asymptotic expansion of the temperature
dependent density-density and field-field correlation functions
in the one-dimensional Bose gas. We should mention that
the same scaling limit was used in [66] to obtain the
k-body local correlators, i.e., correlation functions of the
type 〈[�†(0)]k[�(0)]k〉T , for k � 4 using, however, a totally
different method than ours. For k � 3 local correlators were
first calculated in [67–71]. Other important results concerning
the correlation functions of the 1D Bose gas can be found
in [39,72–90].

The plan of the paper is as follows. In the next section
we introduce the one-dimensional Bose gas and present the
asymptotic expansions for the correlation functions which
constitute the main results of this paper. In Sec. III we review
the XXZ spin chain and introduce the continuum limit which
allows for the derivation of the Bose gas results. In Sec. IV we
introduce the XXZ spin-chain QTM and obtain NLIEs for the
largest and next-largest eigenvalues from which the correlation
lengths can be extracted. The validity of the asymptotic
expansions is checked in Sec. V by comparison with the
TLL-CFT predictions. Finally, the asymptotic behavior of the
correlators in the Bose gas is obtained by taking the continuum
limit in Sec. VI. Some technical calculations are presented in
several appendices.

II. THE ONE-DIMENSIONAL BOSE
GAS AND MAIN RESULT

We consider a one-dimensional system of bosons inter-
acting via a δ-function potential with periodic boundary
conditions. The relevant Hamiltonian is

HNLS =
∫ l

0
dx[∂x�

†(x)∂x�(x) + c�†(x)�†(x)�(x)�(x)

−μ�†(x)�(x)], (3)

where c > 0 is the coupling constant, μ the chemical potential,
l the length of the system, and we have considered h̄ = 2m =
1, with m the mass of the particles. In (3) �†(x) and �(x) are
Bose fields satisfying the canonical commutation relations

[�(x),�†(x ′)] = δ(x − x ′),
[�(x),�(x ′)] = [�†(x),�†(x ′)] = 0.

The interacting one-dimensional Bose gas, also known as the
Lieb-Liniger or the quantum nonlinear Schrödinger (NLS)
model, is solvable by Bethe ansatz [2,39,91]. In the case of
n particles the energy spectrum is given by

E({k}) =
n∑

j=1

e0(kj ), e0(k) = k2 − μ, (4)

with the quasimomenta kj satisfying the following set of Bethe
ansatz equations (BAEs):

eikj l =
n∏

s �=j

kj − ks + ic

kj − ks − ic
, j = 1, . . . ,n. (5)

It is useful to present the logarithmic form of the BAEs (5),

lkj +
n∑

s=1

θ (kj − ks) = 2πmj ,

where mj are integers or half-integers and the scattering phase
θ (k) is defined by

θ(k) = i ln

(
ic + k

ic − k

)
, lim

k→±∞
θ (k) = ±π.

At zero temperature and fixed number of particles n the ground
state is obtained when the (half) integers take the values mj =
j − (n + 1)/2 , j = 1, . . . ,n [2]. In the thermodynamic limit
l,n → ∞ , with their ratio finite D = n/l, the values of the
momenta kj condense in the interval [−q,q] called the Fermi
zone or Dirac sea and the following integral equation for the
density of particles in momentum space can be derived:

ρ(k) − 1

2π

∫ q

−q

K(k − k′)ρ(k′)dk′ = 1

2π
,

K(k − k′) = d

dk
θ (k − k′)

= 2c

(k − k′)2 + c2
. (6)

The Fermi momentum q can be obtained as a unique function
of D, the density of particles, via D = n/l = ∫ q

−q
ρ(k)dk.

At finite temperature the thermodynamics of the model was
calculated in [92] (for a rigorous derivation, see [93,94]). The
grand-canonical potential per length is given by

φ(μ,T ) = − T

2π

∫ +∞

−∞
ln(1 + e−ε(k)/T )dk, (7)

with ε(k), the dressed energy, satisfying the Yang-Yang
equation

ε(k) = k2 − μ − T

2π

∫
R

K(k − k′) ln(1 + e−ε(k′)/T )dk′.

(8)

A. Main result

The main result of this paper is the computation of the
large-distance asymptotic behavior of the correlation functions
in the 1D Bose gas at finite temperature. Due to the fact that the
derivation of the asymptotic expansions is quite involved we
prefer to present these results in the beginning of the paper. The
interested reader can find the details in the following sections.

We will start with the static density-density correlation
function 〈j (x)j (0)〉T , with j (x) = �†(x)�(x). Consider the
following set of functions ui(k) satisfying the nonlinear
integral equations:

ui(k) = k2 − μ + iT

r∑
j=1

θ (k − k+
j ) − iT

r∑
j=1

θ(k − k−
j )

− T

2π

∫
R

K(k − k′) ln(1 + e−ui (k′)/T )dk′. (9)

The 2r parameters {k+
j }rj=1 ({k−

j }rj=1) appearing in Eq. (9) are
located in the upper (lower) half of the complex plane and
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satisfy the constraint

1 + e−ui (k
±
j )/T = 0.

For a given r , the previous equation has more than 2r solutions;
the subscript i labels all the possible choices of solutions for
all r = 1,2, . . . . Note that the NLIEs (9) are almost identical
with the Yang-Yang equation for the dressed energy (8)
with the exception of the additional driving terms. The
large-distance asymptotic expansion for the density-density
correlation function has the form

〈j (x)j (0)〉T = const +
∑

i

Ãi e
−x/ξ (d)[ui ], x → ∞, (10)

where Ãi are distance independent amplitudes which cannot
be obtained using our method and the correlation lengths are
given by

1

ξ (d)[ui]
= − 1

2π

∫
R

ln

(
1 + e−ui (k)/T

1 + e−ε(k)/T

)
dk

− i

r∑
j=1

k+
j + i

r∑
j=1

k−
j , (11)

with ε(k) the dressed energy satisfying (8). Comparison with
the TLL-CFT expansion (94) and other exact results (Chap.
XVII of [39]) allows the identification of the constant term with
〈j (0)〉2

T . The leading terms in the expansion (10) are obtained
considering r = 1 in Eq. (9) with the parameters k±

1 , satisfying
1 + eui (k

±
1 )/T = 0, closest to the real axis.

A few remarks are in order. Using a different method almost
identical equations were obtained by Kozlowski, Maillet, and
Slavnov [55,56] for the generating functional of density corre-
lators, 〈eϕ

∫ x

0 j (x ′)dx ′ 〉T , from which the density correlator can be
obtained via 〈j (x)j (0)〉T = 1

2
∂2

∂x2
∂2

∂ϕ2 〈eϕ
∫ x

0 j (x ′)dx ′ 〉T |ϕ=0.1 The
only difference between our equations and the ones derived
in [55,56] is the presence of a renormalized chemical potential
μ → μ + ϕT in the right-hand side of Eq. (9). As we will show
in Appendix D a slight modification of our method allows for
the derivation of the asymptotic expansion for the generating
functional. However, in order to not confuse the reader, we
prefer here and in the following sections to focus on the density
and field correlators (see below) because it allows for an almost
similar treatment.

In the case of the field-field correlation function
〈�†(x)�(0)〉T we introduce the set of functions vi(k) satis-
fying the NLIEs:

vi(k) = k2 − μ ± iπT + iT θ (k − k0) + iT

r∑
j=1

θ (k − k+
j )

− iT

r∑
j=1

θ (k − k−
j ) − T

2π

∫
R

K(k − k′)

× ln(1 + e−vi (k′)/T )dk′. (12)

1It should be noted that the authors of [55,56] noticed that their
results which were derived using the asymptotic analysis of a
generalized sine-kernel Fredholm determinant can be interpreted in
the framework of the QTM which is the primary object of this paper.

The functions vi(k) depend on 2r + 1 parameters: k0 and
{k+

j }rj=1 located in the upper half of the complex plane and
{k−

j }rj=1 located in the lower half of the complex plane,
satisfying the constraints

1 + e−vi (k0)/T = 0, 1 + e−vi (k
±
j )/T = 0.

In Eq. (12) we will consider the plus sign in front of the iπT

term when k0 is in the first quadrant of the complex plane
Re k0 � 0, Im k0 � 0, and the minus sign when k0 is in the
second quadrant of the complex plane Re k0 < 0, Im k0 � 0.

As in the case of the functions ui(k) the subscript i labels all
the possible choices of roots for all r = 0,1,2, . . . . The large-
distance asymptotic expansion of the field-field correlation
function has the form

〈�†(x)�(0)〉T =
∑

i

B̃i e
−x/ξ (s)[vi ], x → ∞, (13)

where B̃i are distance independent amplitudes which cannot
be obtained using our method and the correlation lengths are
given by

1

ξ (s)[vi]
= − 1

2π

∫
R

ln

(
1 + e−vi (k)/T

1 + e−ε(k)/T

)
dk − ik0

− i

r∑
j=1

k+
j + i

r∑
j=1

k−
j . (14)

Equations (12) and (14) are valid at intermediate and high
temperature. At low temperature it is possible that k0 dives
below the real axis. In this case the following modifications
should be made: In both equations the integral should be taken
along a contour which is the real axis with an indentation such
that k0 is above the contour (also the indentation does not
contain a solution of 1 + e−ε(k)/T = 0) and in Eq. (12) the plus
sign in front of the iπT term is considered when k0 is in the
fourth quadrant of the complex plane Re k0 � 0, Im k0 � 0,

and the minus sign when k0 is in the third quadrant of the
complex plane Re k0 < 0, Im k0 � 0. Also, k0, which satisfies
1 + e−vi (k0)/T = 0, is the closest solution to the real axis
in the lower half-plane. To our knowledge, the asymptotic
expansion (13) is new in the literature (the authors of [55,56]
did not consider the case of the field-field correlation func-
tions). Extensive numerical studies and the low-temperature
analysis (see Sec. VI A) show that Re(1/ξ (d)[ui]) > 0 and
Re(1/ξ (s)[vi]) > 0 for all ui(k) and vi(k). In Sec. VI A we
will also show that (10) and (13) agree with the TLL-CFT
predictions and other exact results.

III. THE X X Z SPIN CHAIN

The asymptotic expansions presented in the previous
section were derived by taking a specific continuum limit in
the equivalent expansions of the low-temperature transversal
and longitudinal correlation functions of the XXZ spin chain.
In order to obtain the asymptotic behavior of the correlators in
the lattice model we will investigate the spectrum of the QTM.
Therefore, it is useful to review the Bethe ansatz solution of
the XXZ spin chain and the associated QTM.
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The integrable spin-1/2 XXZ chain in external longitudinal
magnetic field h is characterized by the following Hamiltonian:

H (J,
,h) = H (0)(J,
) − hSz, (15)

where

H (0)(J,
) = J

L∑
j=1

[
σ (j )

x σ (j+1)
x + σ (j )

y σ (j+1)
y

+

(
σ (j )

z σ (j+1)
z − 1

)]
,

Sz = 1

2

L∑
j=1

σ (j )
z . (16)

We assume periodic boundary conditions and the number of
lattice sites L to be even. The Hamiltonian (15) acts on the
Hilbert space H = (C2)⊗L, J > 0 fixes the energy scale and

 is the anisotropy. In Eq. (16), σ

(j )
x,y,z are local spin operators

which act nontrivially only on the j th lattice site σ
(j )
x,y,x =

I⊗(j−1)
2 ⊗ σx,y,z ⊗ I⊗(L−j )

2 with σx,y,z the Pauli matrices

σx =
(

0 1
1 0

)
, σx =

(
0 −i

i 0

)
, σx =

(
1 0
0 −1

)
,

and I2 the 2 × 2 unit matrix. Sz commutes with H (0)(J,
)
and, therefore, does not affect the integrability of the model.
Also, due to the similarity transformation H (J,
,h) →
V H (J,
, − h)V −1 with V = ∏L

j=1 σ
(j )
x , it is sufficient to

consider only the case of positive magnetic field. Another
consequence is that the thermodynamics of the model does
not depend on the sign of h. In this paper we are going to
consider the massless regime of the XXZ spin chain |
| < 1,
parametrized by 
 = cos η with 0 < η < π and the magnetic
field h smaller than the critical value hc = 8J cos2(η/2).

The Hamiltonian (15) is integrable and was solved by Yang
and Yang in [95–97] with the help of the coordinate Bethe
ansatz (for an ABA solution see [98]). The energy spectrum
of the XXZ spin chain in magnetic field is given by

E({λ}) =
n∑

j=1

e0(λj ) − h
L

2
,

(17)

e0(λ) = 2J sinh2(iη)

sinh(λ + iη/2) sinh(λ − iη/2)
+ h,

with the {λj }nj=1 parameters satisfying the Bethe equations

(
sinh(λj − iη/2)

sinh(λj + iη/2)

)L

=
n∏

s �=j

sinh(λj − λs − iη)

sinh(λj − λs + iη)
,

(18)
j = 1, . . . ,n.

A. Ground-state properties

The ground state of the XXZ spin chain at finite magne-
tization is constructed essentially in the same way as in the
case of the Lieb-Liniger model. This means that the (half)
integers mj which appear in the logarithmic form of the Bethe

equations (18)

Lp0(λj ) −
n∑

k=1

θ (λj − λk) = 2πmj , j = 1, . . . ,n (19)

fill all the possible values in the symmetric interval −(n −
1)/2 � mj � (n − 1)/2. In Eq. (19) we have introduced the
bare momentum p0(λ) and the scattering phase θ (λ),

p0(λ) = i ln

(
sinh(iη/2 + λ)

sinh(iη/2 − λ)

)
,

(20)

θ (λ) = i ln

(
sinh(iη + λ)

sinh(iη − λ)

)
,

where the branches of the logarithm are specified by the
conditions limλ→∞ p0(λ) = π − η and limλ→∞ θ (λ) = π −
2η . The ground state is characterized by real Bethe roots
λj which are contained in the interval [−q,q] called the
Fermi zone. If we call every down spin a particle, then the
thermodynamic limit is characterized by L → ∞,n → ∞
with constant density of particles D = limL,n→∞ n/L. In the
thermodynamic limit the Bethe roots fill densely the interval
[−q,q] and we can introduce the spectral density of particles
ρ(λ) which satisfies the following integral equation:

ρ(λ) + 1

2π

∫ q

−q

K(λ − μ)ρ(μ)dμ = 1

2π
p′

0(λ),

(21)

K(λ) = θ ′(λ) = sin(2η)

sinh(λ + iη) sinh(λ − iη)
.

The average density of particles is then D = ∫ q

−q
ρ(λ)dλ from

which the Fermi boundary q can be obtained.
In the presence of a magnetic field the magnetization of the

ground state is no longer fixed, it depends on the magnitude
of h. In this case the boundary of the Fermi zone q can
be defined by the requirement that the energy of a hole at
the Fermi boundary should be zero, ε0(±q) = 0, where the
dressed energy ε0(λ) satisfies the integral equation

ε0(λ) + 1

2π

∫ q

−q

K(λ − μ)ε0(μ)dμ = h − 2Jp′
0(λ) sin η

≡ e0(λ). (22)

It can be shown that in the massless phase (|
| < 1) considered
in this paper and h smaller than the critical magnetic field hc,

Eq. (22) has a unique solution. When the magnetic field is
vanishing the Fermi boundary goes to infinity.

An important role in the analysis performed in Sec. V is
played by the dressed charge Z(λ) defined by the following
integral equation:

Z(λ) + 1

2π

∫ q

−q

K(λ − μ)Z(μ)dμ = 1, Z(±q) = Z, (23)

and the resolvent of the operator I + 1
2π

K which satisfies

R(λ,μ) + 1

2π

∫ q

−q

K(λ − ν)R(ν,μ)dν = 1

2π
K(λ − μ). (24)

We will also make use of the dressed phase F (λ|μ) defined by

F (λ|μ) + 1

2π

∫ q

−q

K(λ − ν)F (ν|μ)dν = 1

2π
θ (λ − μ), (25)
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and is connected with the dressed charge via

Z(λ) = 1 + F (λ|q) − F (λ| − q),
(26)

1

Z = 1 + F (q|q) + F (q| − q).

A proof of the identities (26) can be found in [99,100].

B. Continuum limit of the X X Z spin chain

The fact that the Hamiltonian of the one-dimensional Bose
gas can be obtained performing a certain continuum limit in
the Hamiltonian of the XXZ spin chain was discovered a
long time ago [65]. In [64] it was shown that the Yang-Yang
thermodynamics, (7) and (8), of the 1D Bose gas can be
obtained by performing the same limit in the thermodynamics
of the lattice model derived using the QTM formalism. This
is to be expected if we take into account that both models
are integrable and that the BAEs and the energy spectrum
of the Bose gas can be obtained from the BAEs and energy
spectrum of the XXZ spin chain in the continuum limit.
Moreover, the authors of [64] (see also [101]) derived multiple
integral representations for the correlation functions of the
Bose gas from equivalent expressions for the XXZ spin chain.
In this paper we will employ a similar technique to derive the
large-distance asymptotic behavior of temperature dependent
Green’s functions in the Bose gas from equivalent results for
the XXZ spin chain.

The XXZ spin chain is characterized by five parameters:
lattice constant δ, number of lattice sites L, strength of the
interaction J , anisotropy 
 = cos η, and magnetic field h.
The Bose gas is characterized by four parameters: mass of the
particles m = 1/2, physical length l, coupling strength c, and
chemical potential μ. First, we will show how we can obtain
the BAEs of the Bose gas (5) from (18).

Let ε → 0 be a small parameter. The desired continuum
limit is obtained considering η = π − ε, δ → 0 like O(ε2);
L even, L → ∞ like O(1/ε2) with Lδ = l and c = ε2/δ.

Performing this limit together with the reparametrization of
the Bethe roots λj = δkj/ε in (18) we find(

cosh
(

δ
ε
kj + i ε

2

)
cosh

(
δ
ε
kj − i ε

2

)
)L

=
n∏

s �=j

sinh
(

δ
ε
kj − δ

ε
ks + iε

)
sinh

(
δ
ε
kj − δ

ε
ks − iε

) ,
(

1 + i δ
2kj

1 − i δ
2kj

)l/δ

=
n∏

s �=j

sinh
(

δ
ε
kj − δ

ε
ks + iε

)
sinh

(
δ
ε
kj − δ

ε
ks − iε

) ,
eikj l =

n∏
s �=j

kj − ks + ic

kj − ks − ic
, j = 1, . . . ,n,

which are exactly the BAEs for the Bose gas (5). Performing
the same limits in e0(λ) [see (17)], we find

e0(λ) → 2Jδ2k2 −
(

2Jε2 + J

2
ε4 − h

)
+ O(ε6). (27)

In order to obtain the energy spectrum (4) of the Bose gas
from (17) (we neglect the zero point energy hL/2), we need
to consider J → ∞ like O(1/ε4) , h → ∞ like O(1/ε2)
with 2Jδ2 = 1 and μ = (2Jε2 + J

2 ε4 − h) finite. This means
that by performing the thermodynamic limit followed by the
continuum limit in the canonical partition function of the
XXZ spin chain (modulo the zero-point energy) we obtain
the grand-canonical partition function of the Lieb-Liniger
model

ZXXZ(h,β) ≡ lim
L→∞

∑
{λ}

e−βE({λ}) → ZNLS(μ,β)

≡ lim
l→∞

∑
{k}

e−βE({k}). (28)

In the following sections we will use a slightly modified scaling
limit compared with the one presented before and utilized
in [64]. Equation (28) can also be obtained if we consider J =
1/2, the continuum model at inverse temperature β related to
the inverse temperature of the lattice model via β = β/δ2, and
h → 0 like O(ε2) such that μ = [ε2/δ2 + ε4/(4δ2) − h/δ2] is
finite. Then

βe0(λ) → β

[
2Jδ2k2 −

(
2Jε2 + J

2
ε4 − h

)]
= β(k2 − μ) = βe0(k).

This shows that the thermodynamic properties and the cor-
relation functions of the Bose gas at any temperature can be
obtained from the thermodynamic properties and correlation
functions of the XXZ spin chain at low temperature and
vanishing magnetic field. In the next sections we will use
this continuum limit, summarized in Table I, to derive the
correlation lengths of the Bose gas from the low-temperature
spectrum of the XXZ-QTM.

IV. THE LOW-TEMPERATURE SPECTRUM OF THE X X Z
SPIN-CHAIN QUANTUM TRANSFER MATRIX

In this section we are going to investigate the low-
temperature spectrum of the XXZ spin-chain QTM [57,58]. A
short review of the relevant facts about the QTM can be found
in [61,98]. The QTM is important for two reasons: First, the
largest eigenvalue, which we will denote by �0(λ), completely

TABLE I. Parameters for the XXZ spin chain and the one-dimensional Bose gas.

XXZ spin chain One-dimensional Bose gas

Lattice constant δ = O(ε2) Particle mass m = 1/2
Number of lattice sites L = O(1/ε2) Physical length l = Lδ

Interaction strength J = 1/2 Repulsion strength c = ε2/δ

Magnetic field h = O(ε2) Chemical potential μ = [ε2/δ2 + ε4/(4δ2) − h/δ2]
Inverse temperature β Inverse temperature β = βδ2

Anisotropy 
 = cos η = ε2/2 − 1
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characterizes the thermodynamics of the system via

f (h,T ) = − 1

β
ln �0(0),

with f (h,T ) the free energy per lattice site. In general,
the largest eigenvalue of the QTM can be expressed in
terms of some finite number of auxiliary functions satisfying
nonlinear integral equations [102]. This is a very efficient
thermodynamic description for the model contrasting with the
thermodynamic Bethe ansatz (TBA) [103] approach which
relies on the string hypothesis and provides an infinite number
of NLIEs. The second reason is given by the fact that
the correlation lengths of various Green’s functions can be
obtained as ratios of the largest and next-largest eigenvalues
of the QTM [60,98]. This is a consequence of the finite gap
between the largest eigenvalue and the rest of the spectrum
of the QTM. In the next sections we are going to study the
low-temperature spectrum of the QTM in order to obtain
the asymptotic expansion of the longitudinal and transversal
correlation functions in the XXZ spin chain. Performing the
continuum limit presented in Sec. III B we are going to arrive
at the results presented in Sec. II A.

The QTM is constructed with the help of the XXZ

trigonometric R matrix

R(λ,μ) ≡

⎛
⎜⎜⎜⎜⎜⎝

R11
11(λ,μ) R11

12(λ,μ) R11
21(λ,μ) R11

22(λ,μ)

R12
11(λ,μ) R12

12(λ,μ) R12
21(λ,μ) R12

22(λ,μ)

R21
11(λ,μ) R21

12(λ,μ) R21
21(λ,μ) R21

22(λ,μ)

R22
11(λ,μ) R22

12(λ,μ) R22
21(λ,μ) R22

22(λ,μ)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 0 0 0

0 b(λ,μ) c(λ,μ) 0

0 c(λ,μ) b(λ,μ) 0

0 0 0 1

⎞
⎟⎟⎟⎠ , (29)

where

b(λ,μ) = sinh(λ − μ)

sinh(λ − μ + iη)
,

(30)

c(λ,μ) = sinh(iη)

sinh(λ − μ + iη)
.

We introduce two types of L operators Lj (λ, − u′), L̃j (u′,λ) ∈
End[(C2)⊗(N+1)] defined as

Lj (λ, − u′) =
2∑

a,b,a1,b1=1

Raa1
b b1

(λ, − u′)e(0)
ab e

(j )
a1b1

,

(31)

L̃j (u′,λ) =
2∑

a,b,a1,b1=1

Rb1 a
a1 b(u′,λ)e(0)

ab e
(j )
a1b1

,

where u′ = iu, u = −2J sin η
β

N
,N is the Trotter number, and

e
(j )
ab is the canonical basis in End[(C2)⊗(N+1)], i.e., e(0)

ab = eab ⊗
I⊗L

2 and e
(i)
ab = I2 ⊗ I⊗(i−1)

2 ⊗ eab ⊗ I⊗(N−i)
2 with eab the 2 ×

2 matrices with all the elements zero except the one at the
intersection of the ath row and bth column which is equal
to 1. The monodromy matrix of the QTM is defined as

TQTM(λ) = LN (λ, − u′)L̃N−1(u′,λ) · · · L2(λ, − u′)L̃1(u′,λ),

and provides a representation of the Yang-Baxter algebra

Ř(λ,μ)[TQTM(λ) ⊗ TQTM(μ)] = [TQTM(μ) ⊗ TQTM(λ)]

× Ř(λ,μ), (32)

with Ř
a1a2

b1b2
(λ,μ) = Ra2a1

b1b2
(λ,μ). Using the explicit expression

of the L operators in the auxiliary space

Lj (λ, − u′) =
(

e
(j )
11 + b(λ,−u′)e(j )

22 c(λ, − u′)e(j )
21

c(λ, − u′)e(j )
12 b(λ, − u′)e(j )

11 + e
(j )
22

)
,

L̃j (u′,λ) =
(

e
(j )
11 + b(u′,λ)e(j )

22 c(u′,λ)e(j )
12

c(u′,λ)e(j )
21 b(u′,λ)e(j )

11 + e
(j )
22

)
,

where now e
(j )
ab is the canonical basis in End[(C2)⊗N ], it is

easy to see that

|�〉 =
(

1
0

)
⊗
(

0
1

)
⊗ · · · ⊗

(
1
0

)
⊗
(

0
1

)
︸ ︷︷ ︸

N factors

(33)

satisfies the conditions of a pseudovacuum [is an eigenvector
of AQTM(λ) and DQTM(λ) and the action of TQTM(λ) on it is
triangular] for the monodromy matrix of the QTM and

TQTM(λ)|�〉 =
(

AQTM(λ)|�〉 BQTM(λ)|�〉
CQTM(λ)|�〉 DQTM(λ)|�〉

)

=
(

[b(u′,λ)]N/2|�〉 BQTM(λ)|�〉
0 [b(λ, − u′)]N/2|�〉

)
.

(34)

The presence of the magnetic field in the Hamiltonian (15) is
easily taken into account by the following transformation of
the monodromy matrix:

TQTM(λ) → TQT M (λ)

(
eβh/2 0

0 e−βh/2

)
. (35)

The quantum transfer matrix tQTM(λ) is defined as the trace
in the auxiliary space of the monodromy matrix tQTM(λ) =
tr0TQTM(λ). The existence of the pseudovacuum (33) and the
fact that TQTM(λ) provides a representation of the Yang-Baxter
algebra ensures that the eigenvalues of the QTM can be
obtained using the ABA. As shown in [61,98] the solutions
of the eigenvalue equation

tQTM(λ)|{λ}〉 ≡ tQTM(λ)BQTM(λ1) · · · BQTM(λp)|�〉
= �(λ)|{λ}〉

are given by

�(λ) = b(u′,λ)N/2eβh/2
p∏

j=1

sinh(λ − λj − iη)

sinh(λ − λj )

+ b(λ, − u′)N/2e−βh/2
p∏

j=1

sinh(λ − λj + iη)

sinh(λ − λj )
, (36)
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provided that the parameters {λj }pj=1 satisfy the Bethe
equations(

b(u′,λj )

b(λj , − u′)

)N/2

= e−βh

p∏
j �=k

sinh(λj − λk + iη)

sinh(λj − λk − iη)
,

(37)
j = 1, . . . ,p.

The asymptotic expansion of the longitudinal correlation
function is given by [60,61,98,104]〈

σ (1)
z σ (m+1)

z

〉
T

= const +
∑

i

Aie
−m/ξ

(d)
i , m → ∞, (38)

where Ai are unknown amplitudes, 1/ξ
(d)
i = ln[�0(0)/

�
(ph)
i (0)], and the sum is over all the next-largest eigenvalues

�
(ph)
i (0) in the N/2 sector. We remind the reader that an

eigenvalue of the QTM is said to be in the M sector if p = M in
Eqs. (36) and (37). The asymptotic expansion of the transversal
correlation function is given by〈

σ
(1)
+ σ

(m+1)
−

〉
T

=
∑

i

Bie
−m/ξ

(s)
i , m → ∞, (39)

where Bi are unknown amplitudes, 1/ξ
(s)
i =

ln[�0(0)/�(s)
i (0)],σ (j )

± = (σ (j )
x ± iσ

(j )
y )/2 and the sum is

over all the next-largest eigenvalues �
(s)
i (0) in the N/2 − 1

sector.
The QTM method can also be utilized to investi-

gate the generating functional for the σz correlators, i.e.,
〈e{ϕ∑m

n=1 e
(n)
22 }〉T , from which the longitudinal correlation func-

tion can be obtained via 〈σ (1)
z σ (m+1)

z 〉T = (2D2
m∂2

ϕ − 4Dm∂ϕ +
1)〈e{ϕ∑m

n=1 e
(n)
22 }〉T |ϕ=0 with Dm the lattice derivative defined as

Dmam = am − am−1 for any sequence (an)n∈N . In this case the
asymptotic expansion is〈

e{ϕ∑m
n=1 e

(n)
22 }〉

T
=
∑

i

Cie
−m/ξ

(ϕ)
i , m → ∞. (40)

In (40) (see [98]) the sum is over all the eigenvalues of
tQTM
ϕ (0) = AQTM(0) + eϕDQTM(0) in the N/2 sector denoted

by �
(ϕ)
i (0) and 1/ξ

(ϕ)
i = ln[�0(0)/�(ϕ)

i (0)].

A. Nonlinear integral equations for the largest eigenvalue

Deriving NLIEs for the largest and next-largest eigenvalues
of the QTM requires a different method from the one utilized in
the computation of the ground state and low-lying excitations
of the transfer matrix in the massless regime. This is due to the
fact that in the Trotter limit N → ∞ the distribution of Bethe
roots (37) in the complex plane presents an accumulation
point at the origin and isolated solutions which makes it
impossible to introduce the “density of roots” like in the case
of the ground state of the transfer matrix. Fortunately, the
Bethe roots appear only in some strips of the complex plane
which allows for the introduction of some auxiliary functions
which satisfy functional equations. Thanks to fundamental
properties of the gross distribution of {λj }pj=1 the auxiliary
functions enjoy certain analyticity properties which allow one
to transform the functional equations in terms of nonlinear
integral equations. Eventually the eigenvalues of the QTM
can be expressed in terms of these auxiliary functions. This

method, which was developed in [58,59,105,106], will be our
main tool in investigating the spectrum of the QTM.

The largest eigenvalue of the QTM lies in the N/2 sector.
We will employ the following notations:

φ±(λ) =
(

sinh(λ ± iu)

sin η

)N/2

, q(λ) =
N/2∏
j=1

sinh(λ − λj ),

which allows one to express the eigenvalues of the QTM (36)
as

�0(λ) = φ−(λ)

φ−(λ − iη)

q(λ − iη)

q(λ)
eβh/2

+ φ+(λ)

φ+(λ + iη)

q(λ + iη)

q(λ)
e−βh/2. (41)

Below, the NLIE and integral expression for the largest
eigenvalue will be determined following [102].

1. Integral equation for the auxiliary function

An extremely important role in the following will be played
by the auxiliary function a(λ), which is periodic of period iπ

and defined by

a(λ) = φ+(λ)

φ−(λ)

φ−(λ − iη)

φ+(λ + iη)

q(λ + iη)

q(λ − iη)
e−βh. (42)

We note that the Bethe equations (37) can be rewritten as
a(λj ) = −1, j = 1, . . . ,N/2. However, the equation a(λ) =
−1 has 3N/2 solutions in a period strip, of which, only
N/2 are given by the Bethe roots {λj }N/2

j=1. The additional
N solutions are called holes and we will denote them by
{λ(h)

j }Nj=1. A typical distribution of Bethe roots and holes for
η ∈ (0,π/2) and low temperatures is presented in Fig. 1. Let C
be a rectangular contour with positive orientation, centered at
the origin, extending to infinity, with the upper (lower) edges
parallel to the real axis through ±i(η − ε)/2, with ε → 0. It

FIG. 1. Typical distribution of Bethe roots (•) and holes (◦) in the
strip |Im λ| < η, η ∈ [0,π/2) characterizing the largest eigenvalue of
the QTM at low temperatures. All the other roots and holes can be
obtained using the iπ periodicity. The contour C surrounds all the
Bethe roots and the pole of the auxiliary function a(λ) at iu.

033623-7
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is important to note that this contour is independent of the
Trotter number and the following considerations are valid for
all N . Inside the contour, the function 1 + a(λ) has N/2 zeros
at the Bethe roots and a pole of order N/2 at iu, which means
that ln[1 + a(λ)] has no winding number around the contour
allowing us to define (λ is located outside of C)

f (λ) ≡ 1

2πi

∫
C

d

dλ
[ln sinh(λ − μ)] ln[1 + a(μ)]dμ

= 1

2πi

∫
C

ln sinh(λ − μ)
a′(μ)

1 + a(μ)
dμ. (43)

For the evaluation of the right-hand side of Eq. (43) we will
use the following theorem:

Theorem 1 ([107]). Let C be a contour in the complex
plane, and let g(λ) be a function analytic and nonzero inside
and on C. Let φ(λ) be another function which is analytic
inside and on C except at a finite number of points; let the
zeros of φ(λ) in the interior of C be a1,a2, . . . and let their
degrees of multiplicity be r1,r2, . . .; and let its poles in the
interior of C be b1,b2, . . . and let their degrees of multiplicity
be s1,s2, . . . . Then

1

2πi

∫
C
g(λ)

φ′(λ)

φ(λ)
dλ =

∑
i∈zeros

rig(ai) −
∑

i∈poles

sig(bi),

obtaining

f (λ) =
N/2∑
j=1

ln sinh(λ − λj ) − N

2
ln sinh(λ − iu)

= ln q(λ) − ln φ−(λ) − N

2
ln sin η . (44)

Equation (44) provides an integral representation for q(λ) in
terms of ln[1 + a(λ)]. Taking the logarithm in Eq. (42) and
using (44) we can derive

ln a(λ) = −βh + ln

(
φ+(λ)

φ−(λ)

φ−(λ + iη)

φ+(λ + iη)

)
+ f (λ + iη) − f (λ − iη),

which is a nonlinear integral equation of convolution type for
the auxiliary function a(λ), valid for all N . Using

lim
N→∞

ln

(
φ+(λ)

φ−(λ)

)
= −2Jβ sinh(iη) coth λ, (45)

the Trotter limit N → ∞ can be performed with the final result

ln a(λ) = −βh − β
2J sinh2(iη)

sinh(λ + iη) sinh λ

− 1

2π

∫
C

sin(2η)

sinh(λ − μ + iη) sinh(λ − μ − iη)
× ln[1 + a(μ)]dμ. (46)

Equation (46) was obtained under the assumption that η ∈
(0,π/2). It is also valid for η ∈ (π/2,π ) but in this case C is
a rectangular contour centered at zero, extending to infinity,
with the upper (lower) edges parallel to the real axis through
±i(π − η − ε)/2 with ε → 0.

2. Integral expression for the largest eigenvalue

It remains to obtain an integral expression for the largest
eigenvalue �0(λ) in terms of the auxiliary function a(λ).
Consider η ∈ (0,π/2) for which the distribution of roots and
holes is presented in Fig. 1. First, we note that Eq. (41) can be
rewritten as

�0(λ) = p(λ)

φ−(λ − iη)φ+(λ + iη)q(λ)
, (47)

with p(λ) = φ−(λ)φ+(λ + iη)q(λ − iη)eβh/2 +
φ+(λ)φ−(λ − iη)q(λ + iη)e−βh/2. The function p(λ)
is quasiperiodic p(λ + iπ ) = (−1)3N/2p(λ) and
limλ→∞ p(λ)/(sinh λ)3N/2 = (eβh/2 + e−βh/2)/(sin η)N . The
zeros of the function p(λ) in a strip of width iπ are the
solutions of the equations a(λ) = −1 yielding

p(λ) = c

N/2∏
j=1

sinh(λ − λj )
N∏

j=1

sinh(λ − λ
(h)
j ), (48)

where {λj }N/2
j=1 and {λ(h)

j }Nj=1 are the Bethe roots and
holes, respectively, and c is a constant. Defining q(h)(λ) =∏N

j=1 sinh(λ − λ
(h)
j ) and using (48) to replace p(λ) in Eq. (47)

we obtain

�0(λ) = c
q(h)(λ)

φ−(λ − iη)φ+(λ + iη)
, (49)

which provides an alternative expression for the largest
eigenvalue in terms of the holes and not Bethe roots. Below,
we will show how an integral representation of ln q(h)(λ) in
terms of the auxiliary function a(λ) can be calculated.

We consider a new rectangular contour with positive
orientation C ′ (see Fig. 1) extending to infinity, with the upper
(lower) edges parallel to the real axis through i(η − ε)/2 and
−i(η − ε)/2 + iπ with ε → 0. The lower edge of the contour
C ′ at i(η − ε)/2 coincides with the upper edge of C but has
opposite orientation. Now we can prove the following identity:∫

C+C′
d(λ − μ)

a′(μ)

1 + a(μ)
dμ = 0,

(50)

d(λ − μ) = d

dλ
ln sinh(λ − μ).

First, we notice that the contributions of the two contours
parallel to the real axis through i(η − ε)/2 cancel each other
due to the opposite orientation. Then it can be easily verified
using the definition of a(λ) (42) that the functions appearing
in (50) are all periodic of period iπ, which means that the upper
and lower edges of C + C ′ do not contribute to the integral.
Finally, the contributions of the sides parallel to the imaginary
axis are also zero as can be seen from

lim
Re μ→±∞

d(λ − μ) = ∓1,
a′(μ)

1 + a(μ)
= a′(μ)

a (μ)

1

1 + a−1(μ)
,

lim
Re μ→±∞

1

1 + a−1(μ)
→ 1

1 + eβh
, lim

Re μ→±∞
a′(μ)

a (μ)
= 0.
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Consider λ close to the real axis. Then making use of (50)
we find

1

2πi

∫
C
d(λ − μ)

a′(μ)

1 + a(μ)
dμ

= − 1

2πi

∫
C′

d(λ − μ)
a′(μ)

1 + a(μ)
dμ. (51)

The right-hand side of (51) can be calculated using Theorem 1
by taking into account that the function 1 + a(λ) has inside the
contour C ′, N zeros at the holes {λ(h)

j }Nj=1 or {λ(h)
j }Nj=1 + iπ ,

N/2 simple poles at {λj }N/2
j=1 + iη, and a pole of order N/2 at

−iu − iη + iπ with the result

1

2πi

∫
C
d(λ − μ)

a′(μ)

1 + a(μ)
dμ

= −
(

N∑
j=1

d
(
λ − λ

(h)
j

)−
N/2∑
j=1

d(λ − λj − iη)

− N

2
d(λ + iu + iη)

)
. (52)

Using again Theorem 1 and the fact that the function 1 + a(λ)
has inside the contour C, N/2 zeros at the Bethe roots {λj }N/2

j=1
and a pole of order N/2 at iu we find

1

2πi

∫
C
d(λ − μ − iη)

a′(μ)

1 + a(μ)
dμ

=
N/2∑
j=1

d(λ − λj − iη) − N

2
d(λ − iu − iη). (53)

The integral representation for ln q(h)(λ) is obtained by taking
the difference of Eqs. (52) and (53), integrating by parts, and
then integrating with respect to λ with the result

1

2πi

∫
C
[d(λ − μ) − d(λ − μ − iη)] ln[1 + a(μ)]dμ

= − ln q(h)(λ) + ln[φ+(λ + iη)φ−(λ − iη)] + c, (54)

where c is a constant of integration. Making use of this integral
representation in Eq. (49) the largest eigenvalue of the QTM
can be written as

ln �0(λ) = c + 1

2πi

∫
C

sinh(iη)

sinh(λ − μ − iη) sinh(λ − μ)
× ln[1 + a(μ)]dμ.

The constant of integration is computed using the behav-
ior of the involved functions at infinity. Performing the
change of variables z = λ − μ in the integral, and using
limλ→∞ ln �0(λ) = ln(eβh/2 + e−βh/2) and limλ→∞ ln[1 +
a(λ)] = ln(1 + e−βh), we find that the constant of integration
is βh/2. The final result for the largest eigenvalue of the QTM
evaluated at 0 is

ln �0(0) = βh

2
+ 1

2π

∫
C

sin η

sinh(μ + iη) sinh(μ)
× ln[1 + a(μ)]dμ. (55)

The integral expression (55), which was obtained for η ∈
(0,π/2), is also valid for η ∈ (π/2,π ) but, as in the case of
the NLIE for the auxiliary function (46), the contour C should

be replaced by a similar rectangular contour with the upper
(lower) edges parallel to the real axis through ±i(π − η − ε)/2
with ε → 0.

3. Final form of the integral equations

The NLIE (46) and integral expression (55) are in fact
correct for all temperatures [102]. This is due to the fact
that, even at high temperatures, the Bethe roots are contained
in the strip |Im λ| < (η − ε)/2 for η ∈ (0,π/2) [or the strip
|Im λ| < (π − η − ε)/2 for η ∈ (π/2,π )], which means that
the reasoning of the previous sections is still valid, producing
the same results. However, in order to obtain the thermody-
namic properties and correlation lengths of the Bose gas we
will be interested only in the low-temperature limit in which
some simplifications of (46) and (55) appear.

Let us consider η ∈ (π/2,π ). In this case, the upper edge
of the contour C, which we will call C+, is a parallel line to the
real axis through i(π − η − ε)/2 (for the following discussion
the presence of the ε term is irrelevant). Then for λ ∈ C+ , λ =
x + i(π − η)/2 with x real, the driving term on the right-hand
side of (46) is negative and equal to

−βh − β
2J sin2 η

cosh(x + iη/2) cosh(x − iη/2)
,

which means that in the low-temperature limit β → ∞(h,J >

0), the contribution of the upper part of the contour is negligible
and we can restrict the free argument λ and the integration
variable to the lower part of the contour. We can shift this
line to the line parallel to the real axis through −iη/2 without
crossing any poles of the driving term obtaining

ln a(λ − iη/2)

= −βh − β
2J sinh2(iη)

sinh(λ + iη/2) sinh(λ − iη/2)

− 1

2π

∫
R

sin(2η)

sinh(λ − μ + iη) sinh(λ − μ − iη)
× ln[1 + a(μ − iη/2)]dμ. (56)

Applying a similar reasoning to the integral expression of the
largest eigenvalue (55), after the shift at −iη/2, we find

ln �0(0) = βh

2
+ 1

2π

∫
R

sin η

sinh(μ + iη/2) sinh(μ − iη/2)
× ln[1 + a(μ − iη/2)]dμ. (57)

Let us introduce the function ε(λ) satisfying e−ε(λ)/T = a(λ −
iη/2), where T = 1/β is the temperature. Then noticing that
the driving term in Eq. (56) is the magnon energy (17),
and using (20) and (21), the NLIE for the auxiliary function
and the integral expression for the largest eigenvalue at low
temperatures can be written as

ε(λ) = e0(λ) + T

2π

∫
R

K(λ − μ) ln(1 + e−ε(μ)/T )dμ,

(58a)

ln �0(0) = h

2T
+ 1

2π

∫
R

p′
0(λ) ln(1 + e−ε(λ)/T )dλ.

(58b)
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These equations are very similar to the Yang-Yang equation
for the excitation energy and the grand-canonical potential of
the Bose gas [92]. Following [64], in Sec. VI we will show
that the Yang-Yang thermodynamics can be obtained from
Eqs. (58) if we perform the scaling limit presented in Sec. III B.
Even though Eqs. (58) were obtained for η ∈ (π/2,π ), they
are also valid for η ∈ (0,π/2), which can be proved by using
appropriate contour manipulations. As these are beyond the
scope of this paper, we confine ourselves to assuming the
validity. This assumption will be verified in Sec. V where we
will show that they reproduce the TLL-CFT predictions for
the free energy and asymptotic behavior of the correlation
functions.

B. Integral equations for the next-largest
eigenvalues in the N/2 sector

Computing the correlation lengths for the Green’s function
〈σ (1)

z σ (m+1)
z 〉T requires the derivation of integral equations for

the next-largest eigenvalues of the QTM in the N/2 sector. This
means that, as in the case of the largest eigenvalue, we will have
N/2 Bethe roots and N holes. In the previous section we have
derived the NLIE for the auxiliary function and the integral
expression for the largest eigenvalue making use of the fact
that the Bethe roots were located in a relevant strip (modulo
the periodicity) of the complex plane which was independent
of the Trotter number and temperature. In the case of the
next-largest eigenvalues in the N/2 sector at low temperatures,
some of the Bethe roots are found outside of this strip and an
equal number of holes are inside the strips. We will employ
the same method used in Sec. IV A but modified in such a
way that these Bethe roots and holes are properly taken into
account. The calculations are presented in Appendix A. At low
temperatures, the next-largest eigenvalues of the QTM in the
N/2 sector are given by

ln �
(ph)
i (0) = h

2T
+ i

r∑
j=1

p0(λ+
j ) − i

r∑
j=1

p0(λ−
j )

+ 1

2π

∫
R

p′
0(λ) ln(1 + e−ui (λ)/T )dλ, (59)

with the auxiliary functions ui(λ) satisfying the NLIEs

ui(λ) = e0(λ) − iT

r∑
j=1

θ (λ − λ+
j ) + iT

r∑
j=1

θ (λ − λ−
j )

+ T

2π

∫
R

K(λ − μ) ln(1 + e−ui (μ)/T )dμ. (60)

The parameters {λ+
j }rj=1 and {λ−

j }rj=1, which belong to the
upper, respectively, lower half-plane are fixed by the constraint
1 + e−ui (λ

±
j )/T = 0. In Eqs. (59) and (60), r can take the values

1,2, . . . . The subscript i enumerates the sets of parameters
{λ±

j }rj=1 satisfying the constraint 1 + e−ui (λ
±
j )/T = 0.

C. Integral equations for the next-largest
eigenvalues in the N/2 − 1 sector

The next-largest eigenvalues in the N/2 − 1 sector are
relevant for the computation of the correlation lengths of the
Green’s function 〈σ (1)

+ σ
(m+1)
− 〉T . The eigenvalues in this sector

are characterized by p = N/2 − 1 in Eqs. (36) and (37). Some
of the features encountered in the study of the largest and N/2
sector eigenvalues are also present in this case.

At low temperatures, the next-largest eigenvalue in this
sector has N/2 − 1 Bethe roots and, possibly, a hole in a
certain strip of the complex plane. Eigenvalues with decreasing
magnitude are obtained by moving pairs of Bethe roots (holes)
outside (inside) the strip. This means that it is sufficient to
obtain integral equations for the cases with one hole or no hole
inside the strip; the equations for the other eigenvalues are
obtained by adding extra driving terms of the type encountered
in Eqs. (59) and (60). The necessary calculations are presented
in Appendix B. We distinguish two cases. For λ0 in the upper
half plane, the next-largest eigenvalues in the N/2 − 1 sector
at low temperatures have the integral representation

ln �
(s)
i (0) = h

2T
− iπ + ip0(λ0) + i

r∑
j=1

p0(λ+
j )

− i

r∑
j=1

p0(λ−
j ) + 1

2π

∫
R

p′
0(λ)

× ln(1 + e−vi (λ)/T )dλ, (61)

with the auxiliary functions vi(λ) satisfying the NLIEs

vi(λ) = e0(λ) ± iπT − iT θ (λ − λ0) − iT

r∑
j=1

θ (λ − λ+
j )

+ iT

r∑
j=1

θ (λ − λ−
j ) + T

2π

∫
R

K(λ − μ)

× ln(1 + e−vi (μ)/T )dμ. (62)

The 2r + 1 parameters λ0, {λ+
j }rj=1 and {λ−

j }rj=1, which
belong to the upper,respectively, lower half-plane are fixed
by the constraints 1 + e−vi (λ0)/T = 0, 1 + e−vi (λ

±
j )/T = 0. On

the right-hand side of Eq. (62) the plus (minus) sign in front
of the iπT term is considered when λ0 is in the first (second)
quadrant of the complex plane Re λ0 � 0, Im λ0 � 0 (Re λ0 <

0, Im λ0 � 0). For λ0 in the lower half-plane Eqs. (61) and (62)
remain valid but the integration contour now is the real axis
with an indentation such that λ0 is above the contour. Also, the
plus (minus) sign in front of the iπT term of (62) is considered
when λ0 is in the fourth (third) quadrant of the complex plane
Re λ0 � 0, Im λ0 � 0 (Re λ0 < 0, Im λ0 � 0). In this case λ0,
which satisfies 1 + e−vi (λ0)/T = 0, is the closest solution to the
real axis in the lower half-plane.

V. COMPARISON WITH THE TLL-CFT PREDICTIONS

In Sec. IV A3 we have derived an integral expression (58),
for the largest eigenvalue of the QTM in terms of an auxiliary
function which obeys a NLIE very similar to the Yang-
Yang equation (8). Equation (58) and the similar integral
representations for the next-largest eigenvalues (59) and (61),
are valid only at low temperatures and, in the course of the
derivation, we have made some assumptions which were not
fully justified for some values of the anisotropy. Here, we
will show that our results are in perfect agreement with the
predictions of the Tomonaga-Luttinger liquid [108,109] and
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conformal field theory [49,110–115], confirming the validity
of our assumptions.

A. Low-temperature behavior of the free energy

At low temperatures CFT predicts [115] that the free energy
per lattice site scales like

f (h,T ) = ε0(h) − πT 2c

6vF

+ O(T 3),
(63)

ε0(h) = −h

2
+
∫ q

−q

e0(λ)ρ(λ)dλ,

where ε0(h) is the density of the ground-state energy, c is
the conformal charge (not to be confused with the coupling
constant of the Bose gas), which is equal to one in the case of
the XXZ spin chain, and vF is the Fermi velocity defined as

vF = ε′
0(q)

2πρ(q)
, (64)

with ε′
0(q) the derivative of the dressed energy (22) evaluated

at the Fermi boundary q.
Let us show that the free energy per lattice site obtained

from Eq. (58b), via f (h,T ) = −T ln �0(0), satisfies (63).
Performing an analysis similar to the one in Appendix A of [92]
or Chap. I of [39] it can be shown that for η ∈ (0,π ) and h <

hc = 8J cos2(η/2), the NLIE (58a) for the auxiliary function
ε(λ) has two zeros on the real axis which we will denote by
±q(T ). Also ε(λ) is negative on [−q(T ),q(T )] and positive
outside of this interval. Let us denote limT →0 q(T ) = q̃ and
limT →0 ε(λ) = ε̃0(λ). Then using

lim
T →0

T ln(1 + e−ε(λ)/T )

=
{−ε̃0(λ), λ ∈ (−q̃,q̃)

0, λ ∈ (−∞, − q̃) ∪ (q̃, + ∞),
(65)

we find that in the low-temperature limit the NLIE (58a)
transforms in the linear equation for the dressed energy (22).
The equation for the dressed energy has a unique solution
for η ∈ (0,π ) which means that limT →0 ε(λ) = ε0(λ) and
limT →0 q(T ) = q. In order to show that Eq. (58b) gives the
correct free energy satisfying (63) we need a more accurate
estimation of integrals containing the factor ln(1 + e−ε(λ)/T ).
In the following we are going to assume that for low temper-
atures the auxiliary function has the expansion [77,116,117]

ε(λ) = ε0(λ) + ε1(λ)T + ε2(λ)T 2 + O(T 3). (66)

Then it can be shown (see Appendix A of [56] or [118]) that, for
any function f (λ), bounded on the real axis and differentiable
in the vicinity of ±q we have

lim
T →0

T

∫
R

f (λ) ln(1 + e−ε(λ)/T ) dλ

= −
∫ q

−q

f (λ)ε(λ)dλ + T 2π2

6ε′
0(q)

[f (q) + f (−q)]

+ T 2ε2
1(q)f (q)

2ε′
0(q)

+ T 2ε2
1(−q)f (−q)

2ε′
0(q)

+ O(T 3). (67)

We should mention that a more compact, but maybe not
as transparent, method of investigating the low-temperature

limit of the QTM spectrum was employed in [104]. All
the results derived here and in the following sections can
also be obtained utilizing the results of the aforementioned
paper. Using (67) and substituting (66) in the equation for the
auxiliary function (58a) we obtain

2∑
k=0

T kεk(λ) + 1

2π

2∑
k=0

T k

∫ q

−q

K(λ − μ)εk(μ) dμ

= e0(λ) − πT 2

12ε′
0(q)

[K(λ − q) + K(λ + q)]

− T 2ε2
1(q)

4πε′
0(q)

K(λ − q) − T 2ε2
1(−q)

4πε′
0(q)

K(λ + q) + O(T 3).

Equating terms of the same order in temperature we find

ε1(λ) = 0, ε2(λ) = π2

6ε′
0(q)

[R(λ,q) + R(λ, − q)], (68)

with the resolvent R(λ,μ) defined in (24). The low-
temperature expansion of the free energy per lattice site is
calculated using the asymptotic formula (67) in Eq. (58b) with
the result

f (h,T ) = −h

2
+ 1

2π

∫ q

−q

p′
0(λ)[ε0(λ) + ε2(λ)T 2]dλ

− πT 2

12ε′
0(q)

p′
0(q) + O(T 3), (69)

where we have used the fact that p′
0(λ) is even, p′

0(−q) =
p′

0(q). Using Eq. (68) and the identity∫ q

−q

p′
0(λ)R(λ, ± q)dλ = p′

0(q) − 2πρ(q) (70)

(for a proof, see Appendix C), (69) takes the form

f (h,T ) = −h

2
+ 1

2π

∫ q

−q

p′
0(λ)ε0(λ)dλ

− πT 2

6

2πρ(q)

ε′
0(q)

+ O(T 3). (71)

Using the identity (C3) and the definition of the Fermi
velocity (64), it is easy to see that this expression is identical
with (63).

B. Low-temperature asymptotic behavior
of the longitudinal correlation

The Tomonaga-Luttinger-liquid theory and CFT predict the
following asymptotic behavior of the longitudinal correlation
function at low temperatures (we consider only the leading
order of the oscillatory terms) [49]:

〈
σ (1)

z σ (m+1)
z

〉
T

= 〈
σ (1)

z

〉2
T

− (TZ/vF )2

2 sinh2(πT m/vF )

+
∑
l∈Z∗

Ale
2imlkF

(
πT/vF

sinh(πT m/vF )

)2l2Z2

,

m → ∞, (72)

with the Fermi momentum defined by kF = πD and Al are
coefficients that do not depend on T . The analysis of the
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QTM spectrum [98] shows that the asymptotic behavior of
the correlation function can be expressed as〈
σ (1)

z σ (m+1)
z

〉
T

= const +
∑

i

Ãi e
−m/ξ (d)[ui ], m → ∞, (73)

where the sum is over all the correlation lengths, 1/ξ (d)[ui] =
ln[�0(0)/�(i)

ph(0)], determined as the ratio of the largest
and next-largest eigenvalues in the N/2 sector. Using (58b)
and (59) we obtain the following explicit expression for the
correlation lengths:

1

ξ (d)[ui]
= − 1

2π

∫
R

p′
0(λ) ln

(
1 + e−ui (λ)/T

1 + e−ε(λ)/T

)
dλ

− i

r∑
j=1

p0(λ+
j ) + i

r∑
j=1

p0(λ−
j ), (74)

where the functions ε(λ) and ui(λ) satisfy Eqs. (58a) and (60).
In the rest of this section we will show that (73) is equivalent
to (72) in the conformal limit.

The analysis of the correlation lengths (74) in the limit
T → 0 is very similar to the one performed by Kozlowski,
Maillet, and Slavnov for the correlation lengths of the Bose
gas, and, for this reason, we are going to use some of the
notations and terminology employed in [56]. In the following
we are going to discard the subscript i for the auxiliary function
ui(λ). We are considering an arbitrary auxiliary function u(λ)
satisfying Eq. (60), with 2r parameters {λ+

j }rj=1, {λ−
j }rj=1,

located in the upper (lower) half-plane, which also satisfy
the constraint 1 + e−u({λ±

j })/T = 0. The first observation that
we are going to make is that limT →0 u(λ) = ε0(λ). In analogy
with the case of the auxiliary function ε(λ) we expect that all
the solutions of the equation 1 + e−u(λ)/T = 0 will collapse
at ±q in the limit T → 0. We will say that the solutions that
collapse at q (−q) belong to the right (left) series. If we assume
that u(λ) has the expansion

u(λ) = ε0(λ) + u1(λ)T + u2(λ)T 2 + O(T 3), (75)

then a formula similar to (67) can be derived as in [56],

lim
T →0

T

∫
R

f (λ) ln(1 + e−u(λ)/T )dλ

= −
∫ q

−q

f (λ)u(λ)dλ + T 2π2

6ε′
0(q)

[f (q) + f (−q)]

+ T 2u2
1(q)f (q)

2ε′
0(q)

+ T 2u2
1(−q)f (−q)

2ε′
0(q)

+ O(T 3). (76)

We are going to consider that the roots {λ±} are distributed in
the following manner: r+

p roots λ+ and r+
h roots λ− belonging

to the right series (collapse at q); r−
p roots λ+ and r−

h roots λ−

belonging to the left series (collapsing at −q), where r±
p and

r±
h satisfy the constraints

r+
p + r−

p = r+
h + r−

h = r, r+
p − r+

h = r−
h − r−

p = l,

with l integer, satisfying −r � l � r . More explicitly, at
sufficiently low temperatures we have

{λ+
j }rj=1 = {q + iT α+

k }r
+
p

k=1 ∪ {−q + iT α−
k }r

−
p

k=1,

Re(α±
k ) > 0, (77a)

{λ−
j }rj=1 = {q − iT β+

k }r
+
h

k=1 ∪ {−q − iT β−
k }r

−
h

k=1,

Re(β±
k ) > 0, (77b)

where α±
k and β±

k satisfy 1 + e−u(±q+iT α±
k )/T = 1 +

e−u(±q−iTβ±
k )/T = 0. The leading Taylor coefficients can be

parametrized by a set of integers p±
k and s±

k via

u(±q + iT α±
k ) = ±2πiT

(
p±

k − 1
2

)
,

u(±q − iTβ±
k ) = ∓2πiT

(
s±
k − 1

2

)
.

Using the expansion (75), ε(±q) = 0 and ε′
0(−q) = −ε′

0(q),
we find

α±
k = 2π

ε′
0(q)

(
p±

k − 1

2

)
± i

u1(±q)

ε′
0(q)

,

(78)

β±
k = 2π

ε′
0(q)

(
s±
k − 1

2

)
∓ i

u1(±q)

ε′
0(q)

.

Substituting the parametrization (77) in Eq. (60) and expanding
the driving terms up to the second order in T we find

u(λ) = e0(λ) + T

2π

∫
R

K(λ − μ) ln(1 + e−u(λ)/T )dμ

+ g1(λ)T + g2(λ)T 2 + O(T 3), (79)

with

g1(λ) = −il[θ (λ − q) − θ (λ + q)]

and

g2(λ) = −K(λ − q)

( r+
p∑

k=1

α+
k +

r+
h∑

k=1

β+
k

)

−K(λ + q)

( r−
p∑

k=1

α−
k +

r−
h∑

k=1

β−
k

)
.

We can now use (76) in (79) obtaining a system of equations
for the unknown functions u1(λ) and u2(λ). For u1(λ) it reads

u1(λ) + 1

2π

∫ q

−q

K(λ − μ) u1(μ) dμ

= −il[θ (λ − q) − θ (λ + q)].

Comparison with the integral equation for the dressed
phase (25) shows that u1(λ) = −2πil[F (λ|q) − F (λ| − q)].
Using the first identity in (26) we can obtain an expression
in terms of the dressed charge u1(λ) = 2πil[1 − Z(λ)]. The
equation for u2(λ) is

u2(λ) + 1

2π

∫ q

−q

K(λ − μ) u2(μ)dμ

= g2(λ) + K(λ − q)

(
π

12ε′
0(q)

+ u2
1(q)

4πε′
0(q)

)

+K(λ + q)

(
π

12ε′
0(q)

+ u2
1(−q)

4πε′
0(q)

)
,

033623-12



CORRELATION LENGTHS OF THE REPULSIVE ONE- . . . PHYSICAL REVIEW A 88, 033623 (2013)

with the solution

u2(λ)

= −R(λ,q)

[ r+
p∑

k=1

α+
k +

r+
h∑

k=1

β+
k − 1

2ε′
0(q)

(
π2

3
+ u2

1(q)

)]

−R(λ, − q)

[ r−
p∑

k=1

α−
k +

r−
h∑

k=1

β−
k

− 1

2ε′
0(q)

(
π2

3
+ u2

1(−q)

)]
.

Using (67) and (76) in (74) and expanding the p0(λ±) terms
up to the first order in T we obtain

1

ξ (d)[u]
= −2ilkF − T

u2
1(q)ρ(q)

ε′
0(q)

+ 2πTρ(q)

×
( r+

p∑
k=1

α+
k +

r−
p∑

k=1

α−
k +

r+
h∑

k=1

β+
k +

r−
h∑

k=1

β−
k

)

+O(T 2). (80)

In deriving (80) we have also used the identity∫ q

−q
p′

0(λ)Z(λ)dλ = ∫ q

−q
ρ(λ)dλ and (C1). Finally, using (78)

we find

1

ξ (d)[u]
= −2ilkF + 2πT

vF

(
l2Z2 − l2 − r +

r+
p∑

k=1

p+
k

+
r−
p∑

k=1

p−
k +

r+
h∑

k=1

s+
k +

r−
h∑

k=1

s−
k

)
+ O(T 2). (81)

The second term in the expansion (72) is obtained for
r = 1, l = 0 and p+

1 = p−
1 = 1 (or s+

1 = s−
1 = 1). The next

leading terms are obtained for r = l , l = 1,2, . . . and the
integers p+

k and s−
k (or p−

k and s+
k ) taking values from

1 to l.
There is, however, one caveat. If we assume Re(α±

k ) >

0, Re(β±
k ) > 0, then (78) together with u1(±q) = 2πil(1 −

Z) impose some constraints on the allowed values of p±
k and

s±
k . A relatively straightforward analysis shows that for η ∈

(π/2,π ) (Z > 1), which is the region most interesting for us,
the allowed values for p±

k and s±
k contain {1,2, . . .}. For η ∈

(0,π/2) we have 1/
√

2 < Z < 1. In this case, for Z close to
1/

√
2, the integers p±

k and s±
k can take the values {1,2, . . .}

only for l = 0, ± 1. For Z → 1 the value of l for which the
allowed values of p±

k and s±
k contain {1,2, . . .} increases. This

means that under the aforementioned assumptions, in the worst
case scenario, our equations can reproduce only the l = 0, ± 1
terms of the CFT expansion.

C. Low-temperature asymptotic behavior
of the transversal correlation

In the case of the transversal correlation TLL and
CFT predict the following asymptotic behavior at low

temperatures [49]:

〈
σ

(1)
+ σ

(m+1)
−

〉
T

=
∑
l∈Z

Ble
2imlkF

(
πT/vF

sinh (πT m/vF )

)(1/2Z2)+2l2Z2

,

(82)
m → ∞,

with Bl coefficients that do not depend on T . The analysis of
the correlation functions in the framework of the QTM [98]
showed that〈

σ
(1)
+ σ

(m+1)
−

〉
T

=
∑

i

B̃i e
−m/ξ (s)[vi ], m → ∞, (83)

where the sum is over all the correlation lengths 1/ξ (s)[vi] =
ln[�0(0)/�(i)

s (0)], determined as the ratio of the largest and
next-largest eigenvalues in the N/2 − 1 sector. Using (58b)
and (61) we obtain the following explicit expression for the
correlation lengths [we neglect the iπ term which produces an
(−1)m factor]:

1

ξ (s)[vi]
= − 1

2π

∫
R

p′
0(λ) ln

(
1 + e−vi (λ)/T

1 + e−ε(λ)/T

)
dλ − ip0(λ0)

− i

r∑
j=1

p0(λ+
j ) + i

r∑
j=1

p0(λ−
j ), (84)

where λ0 is in the upper half-plane and the functions ε(λ) and
vi(λ) satisfy Eqs. (58a) and (62). For λ0 in the lower half-plane
the integration contour is the real axis with an indentation such
that λ0 is above the contour.

First, we will consider the case with λ0 in the upper half-
plane. It is sufficient to consider the conformal limit of the
following correlation length:

1

ξ (s)[v]
= − 1

2π

∫
R

p′
0(λ) ln

(
1 + e−v(λ)/T

1 + e−ε(λ)/T

)
dλ − ip0(λ0),

(85)

with v(λ) satisfying Eq. (62) with r = 0. The behavior of
the correlation length (84) will be obtained by summing the
contributions of (85) and (74) derived in the previous section.
We notice that limT →0 v(λ) = ε0(λ), therefore, we are going
to consider the following expansion:

v(λ) = ε0(λ) + v1(λ)T + v2(λ)T 2 + O(T 3), (86)

with v1(λ) and v2(λ) unknown functions. Also (76) is still
valid if we replace u(λ) with v(λ). We are going to consider
that λ0 is located in the first quadrant [this means that we are
going to have a plus sign in front of the iπT term in Eq. (62)].
The same result is obtained if we consider λ0 in the second
quadrant. Then at sufficiently low temperatures we have

λ0 = q + iα+
0 T , α+

0 = 2π

ε′
0(q)

(
p+

0 − 1

2

)
+ i

v1(q)

ε′
0(q)

, (87)

with p+
0 an integer parametrizing the leading Taylor coefficient

α+
0 . Using this parametrization in Eq. (62), and expanding to

the second order in T we find

v(λ) = e0(λ) + T

2π

∫
R

K(λ − μ) ln(1 + e−v(μ)/T )dμ

+ [iπ − iθ (λ − q)]T − K(λ − q)α+
0 T 2 + O(T 3).

(88)
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The integral equations satisfied by v1(λ) and v2(λ) are obtained
by substituting (76), modified for the v(λ) function, in (88).
For v1(λ) it reads

v1(λ) + 1

2π

∫ q

−q

K(λ − μ)v1(μ)dμ = iπ − iθ (λ − q).

Comparison with the integral equation for the dressed phase
(25) and dressed charge (23) shows that v1(λ) = iπZ(λ) −
2iπF (λ|q). Using the first identity in (26) the solution to this
equation can be rewritten as v1(λ) = iπ [1 − F (λ|q) − F (λ| −
q)]. The equation for v2(λ) is

v2(λ) + 1

2π

∫ q

−q

K(λ − μ) v2(μ) dμ

= K(λ − q)

(
− α+

0 + π

12ε′
0(q)

+ v2
1(q)

4πε′
0(q)

)

+K(λ + q)

(
π

12ε′
0(q)

+ v2
1(−q)

4πε′
0(q)

)
,

with the solution

v2(λ) = −R(λ,q)

[
− 2πα+

0 − 1

2ε′
0(q)

(
π2

3
+ v2

1(q)

)]

−R(λ, − q)

[
− 1

2ε′
0(q)

(
π2

3
+ v2

1(−q)

)]
.

Using (67) and (76) in (85) and expanding the p0(λ+
0 ) term up

to the first order in T we obtain

1

ξ (s)[v]
= 2πTρ(q)

(
α+

0 − v2
1(q)

4πε′
0(q)

− v2
1(−q)

4πε′
0(q)

)
+ O(T 2).

(89)

In deriving (89) we have also used the fact that F (λ|q) +
F (λ| − q) is an odd function of λ [F (−λ| − μ) = −F (λ|μ)]
and (C1). The final result follows from (87) and the use of the
second identity in (26),

1

ξ (s)[v]
= 2πT

vF

(
1

4Z2
+ p+

0 − 1

)
+ O(T 2). (90)

The case with λ0 in the lower half-plane can be treated along
similar lines if we notice that (76) remains valid even if on the
left-hand side we have an integral over a modified contour.
Considering λ0 in the fourth quadrant then (87) is still valid
but, in this case, Re α+

0 < 0. We find v1(λ) = iπ [1 − F (λ|q) −
F (λ| − q)] and the same expression (90) for the correlation
length. The difference between the two cases is given by the
range of allowed values for the integer p+

0 . The condition
Re α+

0 > 0 together with v1(q) = 1 − F (q|q) − F (q| − q)
and F (q|q) + F (q| − q) = −1 + 1/Z imply that the allowed
values for p+

0 are {2,3, . . .} for η ∈ (π/2,π ) (Z > 1) and
{1,2, · · · . . .} for η ∈ (0,π/2) (1/

√
2 < Z < 1). This shows

that while for η ∈ (0,π/2) the leading term of the expansion
can be obtained with λ0 in the upper half-plane this is no
longer true for η ∈ (π/2,π ). Imposing Re α+

0 < 0 we have
p+

0 = {1} for η ∈ (π/2,π ) (this also means that λ0 is the
solution lying in the lower half-plane of 1 + e−v(λ0)/T = 0
closest to the real axis) for which (90) reproduces the leading
term of the CFT expansion. Summarizing, the leading term of

the expansion is obtained for λ0 in the upper (lower) half-plane
for η ∈ (0,π/2) [η ∈ (π/2,π )].

In a similar fashion we can treat the general case (84). As
an example, for λ0 in the first quadrant and l “particle-hole”
pairs {λ+

1 , . . . ,λ+
l } in the second quadrant and {λ−

1 , . . . ,λ−
l } in

the fourth quadrant we obtain

1

ξ (s)[v]
= 2ilkF + 2πT

vF

(
1

4Z2
+ l2Z2 − l2 − 1 + p+

0

+
l∑

k=1

(p−
k + s+

k )

)
+ O(T 2). (91)

This distribution reproduces all the terms l = 1,2, . . . appear-
ing in the CFT expansion (82) for η ∈ (π/2,π ).

VI. CONTINUUM LIMIT

In the previous sections we have obtained NLIEs and
integral representations for the auxiliary functions and eigen-
values of the QTM in the N/2 and N/2 − 1 sector, valid at
low temperatures. In [64] it was shown that by performing
the continuum limit presented in Sec. III B, the Yang-Yang
thermodynamics of the one-dimensional Bose gas can be
obtained from the largest eigenvalue of the QTM. The next
natural step is to perform the same limit in the equations for
the next-largest eigenvalues obtaining the spectrum of what
we can call the continuum quantum transfer matrix. The ratio
of the largest and next-largest eigenvalues of this continuum
QTM will give the correlation lengths of the density-density
and field-field correlation functions of the Bose gas. The
correspondence between the correlation functions in the two
models is presented in Table II. It should be noted that the
results obtained for the Bose gas are valid at all temperatures
and are not restricted to low temperatures as in the case of
similar results obtained for the XXZ spin chain.

We start by showing how we can obtain (7) and (8)
from (58). Performing the continuum limit presented in
Sec. III B (this also includes the reparametrization λ = δk/ε),
we obtain

p0(λ) → δk, p′
0(λ) → ε, θ (λ) → −θ (k),

θ ′(λ) = K(λ) → −ε

δ

2c

k2 + c2
= −ε

δ
K(k),

and e0(λ)/T → e0(k)/T , where T is the temperature in the
Bose gas. Using these results and denoting by ε(k)/T the
continuum limit of ε(λ)/T we see that Eq. (58a) transforms
into the Yang-Yang equation (8). The grand-canonical po-
tential of the Bose gas per unit length φ(μ,T ) is related
to the free energy of the Heisenberg spin chain per lattice

TABLE II. Correspondence in the continuum limit between the
correlation functions of the XXZ spin chain and the one-dimensional
Bose gas.

XXZ spin chain One-dimensional Bose gas

〈σ (1)
z σ (m+1)

z 〉T 〈j (x)j (0)〉T

〈σ (1)
+ σ

(m+1)
− 〉T 〈�†(x)�(0)〉T

〈e{ϕ∑m
n=1 e

(n)
22 }〉T 〈eϕ

∫ x
0 j (x′) dx′ 〉T
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constant through the relation φ(μ,T ) = [f (h,T ) + h/2]/δ3.
Using f (h,T ) = −T ln �0(0) it is easy to see that (7) can be
obtained from (58b) in the continuum limit.

We define the eigenvalues of the continuum QTM by

ln �(0) = 1

δ

(
ln �(0) − h

2T

)
,

where on the right-hand side of this relation the continuum
limit of ln �(0) is understood. For the eigenvalues in the N/2
sector we obtain

ln �
(ph)
i (0) = i

r∑
j=1

k+
j − i

r∑
j=1

k−
j

+ 1

2π

∫
R

ln(1 + e−ui (k)/T )dk, (92)

with ui(k) satisfying (9) and for the eigenvalues in the N/2 − 1
sector we find [the iπ term on the right-hand side of Eq. (61)
is irrelevant in the continuum limit]

ln �
(s)
i (0) = ik0 + i

r∑
j=1

k+
j −

r∑
j=1

k−
j

+ 1

2π

∫
R

ln(1 + e−vi (k)/T )dk, (93)

with vi(k) satisfying (12) and k0 in the upper half-plane. When
k0 is in the lower half-plane the integration contour has to be
changed accordingly. The correlation lengths of the density-
density correlation function 〈j (x)j (0)〉T are obtained as ratios
of the largest continuum eigenvalue ln �0(0) = 1

2π

∫
R ln(1 +

e−ε(k)/T )dk and the next-largest continuum eigenvalues in
the N/2 sector justifying (11). In the case of the field-field
correlation function 〈�†(x)�(0)〉T the correlation lengths are
obtained using the next-largest eigenvalues in the N/2 − 1
sector with the result (14). The case of the generating
functional is treated in Appendix D.

A. Checking the results

The asymptotic expansions (10) and (13) which are valid
for all temperatures should reproduce the TLL-CFT results
[50,51]:

〈j (x)j (0)〉T − 〈j (0)〉2
T = − (TZ/vF )2

2 sinh2(πT x/vF )
+
∑
l∈Z∗

Ãle
2ixlkF

×
(

πT/vF

sinh(πT x/vF )

)2l2Z2

,

x → ∞, (94)

〈�†(x)�(0)〉T =
∑
l∈Z

B̃le
2ixlkF

×
(

πT/vF

sinh(πT x/vF )

)(1/2Z2
)+2l2Z2

,

x → ∞, (95)

in the T → 0 limit. In Eqs. (94) and (95), vF is the Fermi
velocity defined in (E5), kF = πD is the Fermi momentum,
and Z is the dressed charge evaluated at q [see (E2)].

The agreement with the conformal results is proved in
Appendix E.

In the impenetrable limit c → ∞ the leading term of the
asymptotic expansion for the field-field correlation function
was computed by Its, Izergin, and Korepin by solving an
associated Riemann-Hilbert problem [33], Chap. XVI of [39].
This gives us another opportunity to check the validity of
our results by comparison with another exact result. The
leading term in the expansion (13) is obtained when r = 0
in Eq. (12). We will consider that k0 is in the first quadrant,
Re k0 � 0, Im k0 > 0. Taking into account that

lim
c→∞ K(k) = lim

c→∞ θ(k) = 0,

Eqs. (12) for the auxiliary function v(k) (we drop the subscript
i) and dressed energy (8) become

v(k) = k2 − μ + iπT , ε(k) = k2 − μ. (96)

The asymptotic behavior depends on the sign of the chemical
potential. We will consider first the case of negative chemical
potential. In this case the solution of the equation 1 + e−v(k0)/T

which is closest to the real axis and located in the first quadrant
is k0 = i

√|μ|. Using (96) and this value for k0, the correlation
length (14) can be rewritten as

1

ξ (s)[v]
= 1

2π

∫
R

ln

(
e(k2−μ)/T + 1

e(k2−μ)/T − 1

)
dk +

√
|μ|, μ < 0,

which is precisely the result obtained in [33] for negative
chemical potential. In the case of positive chemical potential
we have k0 = √

μ and the correlation length is

1

ξ (s)[v]
= 1

2π

∫
R

ln

(
e(k2−μ)/T + 1

e(k2−μ)/T − 1

)
dk − i

√
μ,

= 1

2π

∫
R

ln

∣∣∣∣e(k2−μ)/T + 1

e(k2−μ)/T − 1

∣∣∣∣dk,

coinciding with the result derived in [33].

B. Numerical results

In this section we present some numerical solutions to the
nonlinear integral equations derived above. Quite generally,
we truncate the real axis to a finite symmetric interval and
use a uniform discretization. The convolution type integrals
are carried out by Fourier transforms. In “momentum space”
convolutions are done by simple products of the Fourier
transforms of the functions resulting in an efficient numerical
algorithm. The integral equation for the function and the
subsidiary equations for the discrete excitation parameters are
solved by iterations which turn out to be quickly convergent.

The results obtained in this paper for the Hamiltonian (3)
are given in dimensionless units. Restoring physical units is
a simple task which can be accomplished in the following
way. For particles of mass m and contact interaction strength
g we introduce a length scale a via c = mga/h̄2. Then, the
units of temperature, chemical potential, density of particles,
reciprocal correlation length, wave number, and specific heat
are T0 = h̄2/(2ma2kB), μ0 = h̄2/(2ma2), n0 = ξ−1

0 = k0 =
1/a, and c0 = kB/a. The physical data presented in the figures
of this section are given in these units for three values
of the chemical potential μ = −1,0, + 1 and fixed value
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FIG. 2. Thermodynamics: specific heat as a function of tem-
perature T for three characteristic cases of the chemical potential
μ = −1,0, + 1 and fixed interaction strength c = 2. Inset: particle
densities as functions of temperature. (All quantities in units of c0,

T0, μ0, and n0.)

of the dimensionless coupling c = 2, which is realized for
any parameter values of m and g with a suitably chosen
a = 2h̄2/(mg).

The specific heat and the particle density in grand-canonical
ensemble are shown in Fig. 2. Note that negative chemical
potentials such as μ = −1 correspond to the dilute phase as
the particle density vanishes at low temperatures exponentially
as does the specific heat, c(T ),n(T ) � exp(μ/T ). Positive
chemical potentials such as μ = +1 correspond to the dense
phase with finite particle density at low temperatures and
linear dependence of the specific heat on temperature. The
“critical” chemical potential μ = 0 separates the dilute and
dense phases and shows a square root dependence of specific
heat and particle density on temperature c(T ),n(T ) � T 1/2.

Next, we like to present our results for the leading
correlation length of the Green’s function. We calculate the
distribution shown for the dense phase in Fig. 7 by means
of the above nonlinear integral equation (12). First of all,

FIG. 3. Green’s function: reciprocal correlation length 1/ξ as
a function of temperature T for three characteristic cases of the
chemical potential μ = −1,0, + 1 and fixed interaction strength
c = 2. (All quantities in units of ξ−1

0 , T0, and μ0.)

FIG. 4. Density-density correlation function (second leading
term): reciprocal correlation length 1/ξ as a function of temperature T

for three characteristic cases of the chemical potential μ = −1,0, + 1
and fixed interaction strength c = 2. Inset: wave number 2kF of the
oscillating factor. (All quantities in units of ξ−1

0 , T0, μ0, and k0.)

we realize that due to the coupling of all roots and holes, a
backflow effect sets in and the distribution shown in Fig. 7
symmetrizes. And second, for lower temperatures all hole
parameters including k0 are below the real axis and all roots
are above. For the numerical treatment of this distribution a
straight integration contour is more suitable than the indented
contour that allowed for a uniform treatment of the CFT
properties. Choosing a straight contour for the case of k0 below
the real axis makes the contribution of k0 to the driving term
disappear, but imposes a severe change on the asymptotics of
ln(1 + e−vi (k)/T ). This function converges to 0 for k → −∞,
but to −2πi for k → +∞. This modified asymptotics can be
enforced numerically and yields the results shown in Fig. 3.
Note that there is no oscillating kF factor for this correlation
function. For μ < 0 the low-temperature limit of 1/ξ (T ) is
finite, for the critical value μ = 0 we see a 1/ξ (T ) � T 1/2

behavior and for μ > 0 the CFT behavior 1/ξ (T ) � 2π T
vF

1
4Z2

sets in at low temperatures.

FIG. 5. Density-density correlation function (second leading
term): particle number n(T ) divided by the wave number 2kF (T ) as
a function of temperature T . Note for the case μ = +1 the universal
T → 0 limit 1/2π . (Temperature in units of T0.)
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FIG. 6. Typical distribution of Bethe roots (•) and holes (◦) in the
strip |Im λ| < η, η ∈ [0,π/2) characterizing one of the next-largest
eigenvalues of the QTM in the N/2 sector at low temperature. All the
other roots and holes can be obtained using the iπ periodicity. The
indentation of the contour Cph excludes λ− + iη and a hole located
close to it. The lower edge of the contour C ′

ph is the same as the upper
edge of Cph but with different orientation. The contour Cph surrounds
all the Bethe roots except λ−, the hole located at λ+, and the pole of
the auxiliary function aph(λ) at iu.

Finally, we present our results for the density-density
correlator (Fig. 4). The leading term is given by a “particle-hole
excitation” at one Fermi point without 2kF oscillations at
low temperature [see (94)]. Interestingly, for this leading
contribution there is a crossover scenario at elevated tem-
peratures from nonoscillating to oscillating behavior. The
detailed study of this phenomenon is beyond the scope of
this paper. Therefore, we restrict ourselves to the study of
the next-leading contribution with 2kF oscillations at low
temperatures with roots and holes as illustrated in Fig. 6. For
μ < 0 the low-temperature limit of 1/ξ (T ) is finite, for the
critical value μ = 0 we see a 1/ξ (T ) � T 1/2 behavior, and
for μ > 0 the CFT behavior 1/ξ (T ) � 2π T

vF
Z2 sets in at

low temperatures. The oscillations 2kF vanish at low T for
μ � 0. In the dense phase (μ > 0) at low T we expect the
universal relation 2kF (T ) � 2πn(T ), which is nicely satisfied
at very low T (see Fig. 5), but shows a nontrivial temperature
dependence at elevated T . We note that the dressed charge for
μ = +1 and c = 2 takes the value Z = 1.38 consistent with
the low-temperature behavior of the correlators shown above.

VII. CONCLUSIONS

Using the spectrum of the XXZ spin-chain QTM and
a specific continuum limit we have derived the asymptotic
expansions of the temperature dependent density-density
and field-field correlation functions in the interacting one-
dimensional Bose gas. As a by-product we have also obtained
similar expansions, valid at low temperatures, for the lon-
gitudinal and transversal correlation functions in the XXZ

spin chain. One could naturally expect that similar results
can be derived in the case of the spinorial 1D Bose gas
[119,120] which can be obtained as the continuum limit of

the Uq[ŝl(3)] Perk-Schultz spin chain [121,122]. This subject
will be deferred to a future publication.

Note added in proof. Recently we became aware of
Ref. [124] where some of the results for the XXZ spin chain
were rederived and generalized.
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APPENDIX A: DERIVATION OF THE INTEGRAL
EQUATIONS FOR THE NEXT-LARGEST EIGENVALUES IN

THE N/2 SECTOR

1. Integral equation for the auxiliary function

For reasons of clarity we are going to consider first the
simplest case in which only one Bethe root (hole) is outside (in-
side) the relevant strip in the complex plane. The generalization
to the case of r pairs is a natural extension of this particular ex-
ample. A typical distribution of roots and holes for η ∈ (0,π/2)
and low temperatures is presented in Fig. 6, where we have
denoted by λ− and λ+ the Bethe root, respectively, the hole out-
side (inside) the strip |Im λ| < η/2. It should be emphasized
that this “particle-hole” distribution is valid only at low tem-
peratures; at higher temperatures the next-largest eigenvalues
in the N/2 sector are characterized by the so-called 1-string
type and 2-string type solutions [123]. The eigenvalue and the
auxiliary function aph(λ) corresponding to the distribution pre-
sented in Fig. 6 are described by the same formulas as in (41)
and (42). It is useful to present q(λ) in the following form:

q(λ) = sinh(λ − λ−)
N/2−1∏
j=1

sinh(λ − λj ),

where {λj }N/2−1
j=1 are the N/2 − 1 Bethe roots inside the

strip |Im λ| < η/2. The equation aph(λ) + 1 = 0 has 3N/2
solutions, of which N/2 are the Bethe roots and N are holes
denoted by {λ(h)

j }N−1
j=1 and λ+.

We introduce the rectangular contour Cph (see Fig. 6)
centered at the origin, extending to infinity with the edges
parallel to the real axis through ±i(η − ε)/2,ε → 0, which
presents an indentation of the upper edge such that λ− + iη

is not in the interior of the contour. Inside the contour Cph

the function 1 + aph(λ) has N/2 zeros at the Bethe roots
{λj }N/2−1

j=1 and hole λ+ and a pole of order N/2 at iu.
Therefore, the function ln[1 + aph(λ)] has no winding number
around the contour (the presence of the indentation ensures
that the function ln[1 + aph(λ)] does not have an extra pole
at λ− + iη) allowing us to define (λ is located outside the
contour Cph)

fph(λ) ≡ 1

2πi

∫
Cph

d

dλ
[ln sinh(λ − μ)] ln[1 + aph(μ)]dμ

= 1

2πi

∫
Cph

ln sinh(λ − μ)
a′

ph(μ)

1 + aph(μ)
dμ, (A1)
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which can be evaluated using Theorem 1 with the result

fph(λ) =
N/2−1∑
j=1

ln sinh(λ − λj ) + ln sinh(λ − λ+)

− N

2
ln sinh(λ − iu). (A2)

Equation (A2) can be rewritten as ln q(λ) = fph(λ) +
ln sinh(λ−λ−) − ln sinh(λ − λ+) + ln φ−(λ) +N/2 ln sin η

providing an integral representation for ln q(λ). Taking the
logarithm of Eq. (42) and using this integral representation
we find

ln aph(λ) = −βh + ln

(
φ+(λ)

φ−(λ)

φ−(λ + iη)

φ+(λ + iη)

)

+ ln

(
sinh(λ − λ− + iη)

sinh(λ − λ− − iη)

)

− ln

(
sinh(λ − λ+ + iη)

sinh(λ − λ+ − iη)

)
+ fph(λ + iη)

− fph(λ − iη).

Performing the Trotter limit N → ∞, with the help of Eq. (45)
we obtain the NLIE for the auxiliary function

ln aph(λ) = −βe0(λ + iη/2) + iθ (λ − λ+) − iθ (λ − λ−)

− 1

2π

∫
Cph

K(λ − μ) ln[1 + aph(μ)]dμ.

(A3)

Equation (A3) was obtained assuming η ∈ (0,π/2). It remains
valid also for η ∈ (π/2,π ) if the contour Cph is replaced by
a similar rectangular contour with the upper (lower) edges
parallel to the real axis through ±i(π − η − ε)/2, ε → 0 but,
in this case, without the indentation.

2. Integral expression for the next-largest
eigenvalue in the N/2 sector

The integral expression for the next-largest eigenvalue
in the N/2 sector is obtained in a similar fashion as in
the largest eigenvalue case. The starting point is, again, the
representation (49) of the eigenvalue in terms of the holes
where it is useful to denote q(h)(λ) as

q(h)(λ) = sinh(λ − λ+)
N−1∏
j=1

sinh
(
λ − λ

(h)
j

)
.

In order to obtain an integral expression for q(h)(λ) we
introduce a rectangular contour C ′

ph (see Fig. 6) extending
to infinity with the edges parallel to the real axis through
i(η − ε)/2 and −i(η − ε)/2 + iπ. The edge at i(η − ε)/2
presents an indentation such that λ− + iη is contained in the
interior of C ′

ph and is identical with the upper edge of the
contour Cph but with opposite orientation. Then the identity∫

Cph+C′
ph

d(λ − μ)
a′

ph(μ)

1 + aph(μ)
dμ = 0 (A4)

can be proved in exactly the same way as its largest eigenvalue
counterpart (50). For λ close to the real axis using (A4) and

Theorem 1 we obtain

1

2πi

∫
Cph

d(λ − μ)
a′

ph(μ)

1 + aph(μ)
dμ

= −
(

N−1∑
j=1

d
(
λ − λ

(h)
j

)+ d(λ − λ−) − d(λ − λ− − iη)

−
N/2−1∑
j=1

d(λ − λj − iη) − N

2
d(λ + iu + iη)

)
. (A5)

In deriving Eq. (A5), we have used the fact that, inside the
contour C ′

ph, the function 1 + aph(λ) has N zeros at λ− +
iπ, {λ(h)

j }N−1
j=1 or {λ(h)

j }N−1
j=1 + iπ , N/2 − 1 simple poles at

{λj }N/2−1
j=1 + iη, a simple pole at λ− + iη, and a pole of order

N/2 at −iu − iη + iπ . Using again Theorem 1 and the fact
that inside the contour Cph the function 1 + aph(λ) has N/2
zeros at the Bethe roots {λj }N/2−1

j=1 and hole λ+, and a pole of
order N/2 at iu we find

1

2πi

∫
Cph

d(λ − μ − iη)
a′

ph(μ)

1 + aph(μ)
dμ

=
N/2−1∑
j=1

d(λ − λj − iη) + d(λ − λ+ − iη)

− N

2
d(λ − iu − iη). (A6)

Taking the difference of Eqs. (A5) and (A6), integrating by
parts, and then integrating with respect to λ we obtain the
following representation:

ln q(h)(λ) = ln

(
sinh(λ − λ+)

sinh(λ − λ+ − iη)

)

− ln

(
sinh(λ − λ−)

sinh(λ − λ− − iη)

)
+ ln[φ+(λ + iη)

×φ−(λ − iη)] − 1

2πi

∫
Cph

[d(λ − μ)

− d(λ − μ − iη)] ln[1 + aph(μ)]dμ + c,

(A7)

with c a constant of integration. Finally, the integral expression
for the next-largest eigenvalue of the QTM in the N/2 sector
is obtained by replacing (A7) in (49) with the result

ln �ph(0) = βh

2
+ ln

(
sinh λ+

sinh(λ+ + iη)

)

− ln

(
sinh λ−

sinh(λ− + iη)

)

+ 1

2π

∫
Cph

p′
0(μ + iη/2) ln[1 + aph(μ)]dμ.

(A8)

The constant of integration βh/2 was calculated using the
behavior of the involved functions at infinity, like in the
case of the largest eigenvalue. Equation (A8) is also valid
in the domain η ∈ (π/2,π ) if the contour Cph is replaced by
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a rectangular contour, extending to infinity, with the edges
parallel to the real axis through ±i(π − η − ε)/2, ε → 0.

3. Final form of the integral equations

We consider η ∈ (0,π/2). In the low-temperature limit we
are going to neglect the contribution from the upper edge of
the contour as we did in Sec. IV A3. If in Eq. (A3) we restrict
the free parameter λ and the variable of integration to the lower
part of the contour, which is the line parallel to the real axis at
−iη/2, we find

ln aph(λ − iη/2)

= −βe0(λ) + iθ (λ − λ+) − iθ (λ − λ−)

− 1

2π

∫
R

K(λ − μ) ln[1 + aph(μ − iη/2)]dμ, (A9)

where by λ± we understand λ± → λ± + iη/2 , which now
belong to the upper (lower) half-plane. The expression (A8)
for the next-largest eigenvalue becomes

ln �ph(0) = βh

2
+ ip0(λ+) − ip0(λ−)

+ 1

2π

∫
R

p′
0(μ) ln[1 + aph(μ − iη/2)]dμ.

(A10)

Introducing the function u(λ) satisfying e−u(λ)/T = aph(λ −
iη/2), the NLIE for the auxiliary function and the integral
expression for the next-largest eigenvalues in the N/2 sector
at low temperatures can be written as

u(λ) = e0(λ) − iT θ (λ − λ+) + iT θ (λ − λ−)

+ T

2π

∫
R

K(λ − μ) ln(1 + e−u(μ)/T )dμ, (A11)

ln �ph(0) = h

2T
+ ip0(λ+) − ip0(λ−)

+ 1

2π

∫
R

p′
0(μ) ln(1 + e−u(μ)/T )dμ, (A12)

where the parameters λ± satisfy the constraint 1 + e−u(λ±)/T =
0, and are located in the upper (lower) half-plane. While we
derived these equations assuming that η ∈ (0,π/2) we are
going to assume that they are valid also for η ∈ (π/2,π ). The
CFT analysis in Sec. V shows that this assumption is justified.
The obvious generalization of Eqs. (A11) and (A12) in the
case of r pairs of Bethe roots and holes is given by Eqs. (60)
and (59).

APPENDIX B: DERIVATION OF THE INTEGRAL
EQUATIONS FOR THE NEXT-LARGEST EIGENVALUES IN

THE N/2 − 1 SECTOR

1. Integral equation for the auxiliary function

As we have mentioned in Sec. IV C it is sufficient to
consider the case with N/2 − 1 Bethe roots and, possibly,
one hole in the relevant strip of the complex plane. First, we
will consider the case with one hole inside the strip. A typical
distribution of the Bethe roots and hole, at low temperatures
and η ∈ (0,π/2), is presented in Fig. 7, where we have denoted
by λ0 the hole inside the strip |Im λ| < η/2. The eigenvalue

FIG. 7. Typical distribution of Bethe roots (•) and holes (◦)
in the strip |Im λ| < η, η ∈ [0,π/2) characterizing the next-largest
eigenvalues of the QTM in the N/2 − 1 sector without particle-hole-
type terms. All the other roots and holes can be obtained using the
iπ periodicity. The contour C surrounds all the Bethe roots, the hole
located at λ0, and the pole of the auxiliary function as(λ) at iu.

and auxiliary function as(λ) corresponding to the distribution
presented in Fig. 7 are described by formulas similar to (41)
and (42), but in this case q(λ) is defined as

q(λ) =
N/2−1∏
j=1

sinh(λ − λj ),

where {λj }N/2−1
j=1 are the N/2 − 1 Bethe roots. The equation

as(λ) + 1 = 0 has 3N/2 − 1 solutions, of which, N/2 − 1 are
Bethe roots and N are holes denoted by {λ(h)}N−1

j=1 and λ0.
Consider the contour C introduced in Sec. IV A1. Inside

the contour, the function 1 + as(λ) has N/2 zeros at the Bethe
roots {λj }N/2−1

j=1 and hole λ0, and a pole of order N/2 at iu.
Therefore, we can define (λ is located outside the contour C)

fs(λ) ≡ 1

2πi

∫
C

d

dλ
[ln sinh(λ − μ)] ln[1 + as(μ)]dμ

= 1

2πi

∫
C

ln sinh(λ − μ)
a′

s(μ)

1 + as(μ)
dμ, (B1)

which can be evaluated using Theorem 1 with the result

fs(λ) =
N/2−1∑
j=1

ln sinh(λ − λj ) + ln sinh(λ − λ0)

− N

2
ln sinh(λ − iu). (B2)

Taking the logarithm in Eq. (42), and using (B2), which can be
rewritten as ln q(λ) = fs(λ) − ln sinh(λ − λ0) + ln φ−(λ) +
N/2 ln sin η we find

ln as(λ) = −βh + ln

(
φ+(λ)

φ−(λ)

φ−(λ + iη)

φ+(λ + iη)

)

+ ln

(
sinh(λ − λ0 − iη)

sinh(λ − λ0 + iη)

)
+ fs(λ + iη) − fs(λ − iη).

033623-19
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Making use of Eq. (45), we can take the Trotter limit N → ∞
obtaining the NLIE for the auxiliary function

ln as(λ) = −βe0(λ + iη/2) ∓ iπ + iθ (λ − λ0)

− 1

2π

∫
C
K(λ − μ) ln[1 + as(μ)]dμ. (B3)

In Eq. (B3), the minus (plus) sign in front of the iπ factor is
considered when Re λ0 is positive (negative). The same NLIE
is valid also for η ∈ (π/2,π ) if the contour C is replaced by
a similar rectangular contour with the upper (lower) edges
parallel to the real axis through ±i(π − η − ε)/2, ε → 0.

2. Integral expression for the next-largest
eigenvalue in the N/2 − 1 sector

The starting point of our derivation will be again the
representation (49), which is also valid for the eigenvalues in
the N/2 − 1 sector. We need an integral representation for
q(h)(λ) = sinh(λ − λ0)

∏N−1
j=1 sinh(λ − λ

(h)
j ) . If we consider

the contour C ′ introduced in Sec. IV A2, then the following
identity holds:∫

C+C′
d(λ − μ)

a′
s(μ)

1 + as(μ)
dμ = 0. (B4)

For λ close to the real axis, using (B4), Theorem 1 and the fact
that inside the contour C ′

ph the function 1 + as(λ) has N − 1

zeros at {λ(h)
j }N−1

j=1 or {λ(h)
j }N−1

j=1 + iπ ,N/2 − 1 simple poles at

{λj }N/2−1
j=1 + iη, and a pole of order N/2 at −iu − iη + iπ ,

we find

1

2πi

∫
C
d(λ − μ)

a′
s(μ)

1 + as(μ)
dμ

= −
(

N−1∑
j=1

d
(
λ − λ

(h)
j

)−
N/2−1∑
j=1

d(λ − λj − iη)

− N

2
d(λ + iu + iη)

)
. (B5)

Inside the contour C the function 1 + as(λ) has N/2 zeros at
the Bethe roots {λj }N/2−1

j=1 and hole λ0 and a pole of order N/2
at iu. Using again Theorem 1 we have

1

2πi

∫
C
d(λ − μ − iη)

a′
s(μ)

1 + as(μ)
dμ

=
N/2−1∑
j=1

d(λ − λj − iη) + d(λ − λ0 − iη)

−N

2
d(λ − iu − iη). (B6)

Taking the difference of Eqs. (B5) and (B6), integrating by
parts, and then integrating with respect to λ we obtain the
following representation:

ln q(h)(λ) = ln

(
sinh(λ − λ0)

sinh(λ − λ0 − iη)

)
+ ln[φ+(λ + iη)φ−(λ − iη)]

− 1

2πi

∫
C
[d(λ − μ) − d(λ − μ − iη)]

× ln[1 + as(μ)]dμ + c, (B7)

with c a constant of integration. The integral expression for
the next-largest eigenvalue of the QTM in the sector N/2 − 1
is obtained by replacing (B7) in (49) with the result

ln �s(0) = βh

2
+ ln

(
sinh λ0

sinh(λ0 + iη)

)

+ 1

2π

∫
C
p′

0(μ + iη/2) ln[1 + as(μ)]dμ.

(B8)

Equation (B8) is also valid in the domain η ∈ (π/2,π ) if the
contour C is replaced by a rectangular contour, extending to
infinity, with the edges parallel to the real axis through ±i(π −
η − ε)/2, ε → 0.

3. Final form of the integral equations

We consider η ∈ (0,π/2). Performing the same operations
as in Appendix A 3, Eq. (B3) is transformed into

ln as(λ − iη/2)

= −βe0(λ) ∓ iπ + iθ (λ − λ0)

− 1

2π

∫
R

K(λ − μ) ln[1 + as(μ − iη/2)]dμ, (B9)

where λ0 → λ0 + iη/2 is in the upper half-plane. The expres-
sion (B8) for the next-largest eigenvalue becomes

ln �s(0) = βh

2
− iπ + ip0(λ0)

+ 1

2π

∫
R

p′
0(μ) ln[1 + as(μ − iη/2)]dμ.

(B10)

Introducing the function v(λ) satisfying e−v(λ)/T = as(λ −
iη/2) the NLIE for the auxiliary function and the integral
expression for the next-largest eigenvalues in the N/2 − 1
sector at low temperatures can be written as

v(λ) = e0(λ) ± iπT − iT θ (λ − λ0)

+ T

2π

∫
R

K(λ − μ) ln(1 + e−v(μ)/T )dμ, (B11)

ln �s(0) = h

2T
− iπ + ip0(λ0)

+ 1

2π

∫
R

p′
0(μ) ln(1 + e−v(μ)/T )dμ, (B12)

where λ0 satisfies the constraint 1 + e−v(λ0)/T = 0. We should
mention that we can discard the iπ term on the right-hand side
of (B12) [this has the effect of neglecting an (−1)m factor in
the asymptotic expansion which is irrelevant in the continuum
limit]. On the right-hand side of Eq. (B11) we will consider the
plus (minus) sign in front of the iπT term when λ0 is in the first
(second) quadrant of the complex plane. Again we are going
to assume that similar formulas are valid for η ∈ (π/2,π ).
The generalization of (B11) and (B12) to the case when r

particle-hole pairs are present is given by Eqs. (61) and (62).
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We still need to derive equations for the case when inside
the strip |Im λ| < η/2 there is no hole present. Consider λ0 the
hole closest to the line parallel to the real axis with imaginary
part −iη/2. If we modify C adding an indentation such that λ0

is inside the contour and similarly modifying the upper edge of
C ′ such that λ0 + iπ is outside of C ′ then all the considerations
of the previous sections still hold. However, when we take the
low-temperature limit of the equations in Eqs. (B9) and (B10)
the integration contour will be transformed in the real axis
with an indentation such that λ0 → λ0 + iη/2 (which now
belongs to the lower half-plane) is above the contour. The
generalization of this result to the case when r particle-hole
pairs are present is presented in Sec. IV C.

APPENDIX C: PROOF OF SOME IDENTITIES

Here we prove some identities used in Sec. V. We start with∫ q

−q

p′
0(λ)R(λ, ± q)dλ = p′

0(q) − 2πρ(q). (C1)

Using a formal solution of Eq. (24) on the left-hand side of (C1)
we have∫ q

−q

p′
0(λ)R(λ, ± q)dλ

=
∫ q

−q

∫ q

−q

(
1 + 1

2π
K

)−1

(λ,μ)
1

2π
K(μ ∓ q)p′

0(λ)dμ dλ

=
∫ q

−q

K(q ∓ μ)ρ(μ)dμ,

where in the second line we have used the symmetry of the
kernel K(λ − μ) = K(μ − λ) and the integral equation for the
density (21). The identity (C1) follows from

ρ(±q) + 1

2π

∫ q

−q

K(q ∓ μ)ρ(μ)dμ = 1

2π
p′

0(±q), (C2)

and the fact that ρ(λ) and p′
0(λ) are even functions. Using a

similar method we can prove that∫ q

−q

ε0(λ)p′
0(λ)dλ = 2π

∫ q

−q

e0(λ)ρ(λ)dλ. (C3)

Making use of the equation for the dressed energy (22) we can
rewrite the left-hand side of (C3) as∫ q

−q

ε0(λ)p′
0(λ)dλ

=
∫ q

−q

∫ q

−q

(
1 + 1

2π
K

)−1

(λ,μ) e0(μ) p′
0(λ)dμ dλ,

= 2π

∫ q

−q

e0(μ)ρ(μ)dμ,

where we have used again the symmetry of the kernel and
Eq. (21).

APPENDIX D: DERIVATION OF THE ASYMPTOTIC
EXPANSION FOR THE GENERATING FUNCTIONAL OF

DENSITY CORRELATORS

In this appendix we will show how we can derive, using
our method, the results obtained in [55,56]. The first step

in the computation of the asymptotic expansion for the
generating functional of density correlators in the Bose gas
is the derivation of NLIEs for the eigenvalues of the twisted
QTM tQTM

ϕ = AQTM(0) + eϕDQTM(0) in the N/2 sector. The
eigenvalues of the twisted QTM in the N/2 sector are [61]

�
(ϕ)
i (λ) = φ−(λ)

φ−(λ − iη)

q(λ − iη)

q(λ)
eβh/2

+ φ+(λ)

φ+(λ + iη)

q(λ + iη)

q(λ)
e−(βh/2)+ϕ, (D1)

with q(λ) = ∏N/2
j=1 sinh(λ − λj ) and {λj }N/2

j=1 satisfying the
BAEs(

b(u′,λj )

b(λj , − u′)

)N/2

= e−βh+ϕ

N/2∏
j �=k

sinh(λj − λk + iη)

sinh(λj − λk − iη)
,

j = 1, . . . ,N/2. (D2)

The derivation of the NLIEs and integral expressions for the
N/2 sector eigenvalues of the twisted QTM (this includes
also the largest eigenvalue) is almost identical with the one
presented in Sec. IV A and Appendix A (we use a similar
distribution of Bethe roots and holes as in Figs. 1 and 6).
We obtain similar equations as Eqs. (58a) and (58b) (for the
largest eigenvalue) and Eqs. (59) and (60) (for the next-largest
eigenvalues in the N/2 sector) with the only difference being
the replacement of the h/(2T ) with h/(2T ) + ϕT in the right-
hand side of Eqs. (58b) and (60). The reader should note that ϕ
does not appear in the integral expressions for the eigenvalues.

Performing the continuum limit in (40) we find

〈eϕ
∫ x

0 j (x ′)dx ′ 〉T =
∑

i

C̃ie
−x/ξ (ϕ)[uϕ

i ], x → ∞, (D3)

with the correlation lengths defined by

1

ξ (ϕ)
[
u

ϕ

i

] = − 1

2π

∫
R

ln

(
1 + e−u

ϕ

i (k)/T

1 + e−ε(k)/T

)
dk

− i

r∑
j=1

k+
j + i

r∑
j=1

k−
j , (D4)

and the auxiliary functions u
ϕ

i (k) satisfying the NLIEs:

u
ϕ

i (k) = k2 − μ− ϕT + iT

r∑
j=1

θ (k − k+
j ) − iT

r∑
j=1

θ(k − k−
j )

− T

2π

∫
R

K(k − k′) ln(1 + e−u
ϕ

i (k′)/T )dk′. (D5)

The 2r parameters {k+
j }rj=1 ({k−

j }rj=1) appearing in Eq. (D5)
belong to the upper (lower) half of the complex plane and
satisfy the constraint 1 + eu

ϕ

i (k±
j )/T = 0. r can take the values

0,1,2, . . . with the r = 0 term [this means that the sums in
Eqs. (D4) and (D5) are zero] being the dominant contribution
in the expansion. Equation (D3) was first derived in [55].

APPENDIX E: LOW-TEMPERATURE LIMIT OF THE
ASYMPTOTIC EXPANSIONS

The low-temperature analysis of the asymptotic expan-
sions (10) and (13) is very similar with the one performed
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in Secs. V B and V C. The only difference is the fact that
in the Bose gas case the principal integral operator is I −

1
2π

K and p0(k) = k, which means that p′
0(k) = 1. Therefore,

the calculations are almost identical with the ones for the
XXZ spin chain except for some sign changes. The integral
equations for the zero-temperature dressed energy ε0(k) and
the dressed charge Z(k) are given by

ε0(k) − 1

2π

∫ q

−q

K(k − k′)ε0(k′)dk′ = k2 − μ ≡ e0(k) (E1)

and

Z(k) − 1

2π

∫ q

−q

K(k − k′)Z(k′)dk′ = 1, Z(±q) = Z.

(E2)

The resolvent of the integral operator I − 1
2π

K and the dressed
phase equations are obtained from the XXZ spin-chain
equivalents (24) and (25) by changing the sign in front of the

integral and replacing K(λ,μ) ,θ (λ) and ±q with K(k,k′) ,θ (k)
and ±q. The identities (26)and (C1) transform into (note the
sign changes)

Z(k) = 1 + F (k| − q) − F (k|q),
(E3)

1

Z
= 1 − F (q|q) − F (q| − q),

∫ q

−q

R(k, ± q)dk = 2πρ(q) − 1, (E4)

with (C3) still valid in the Bose case. Additional simplifications
occur due to the fact that Z(k) = 2πρ(k). The Fermi velocity
can be rewritten as

vF = ε′
0(q)

2πρ(q)
= ε′

0(q)

Z
. (E5)

Using these relations and performing calculations similar with
the ones from Secs. V B and V C we obtain (94) and (95).
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