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Relativistic jets in active galactic nuclei (AGN)
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Introduction
@_ supermassive spinning
black hole
(M ~ 107 — 10° M)
@ surrounded by an
accretion disk

@ relativistic plasma jets:
Viets ~ 0.9 —0.995 ¢

@ Lorentz factor:
Mr~2-10 Cygnus AFR-ID)

@ [ = By, with B =v/c
and o = (1 — §%)71/2

Credit: NRAO/AUT
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Introduction

Metrics

@ distance between to points in Euclidean space (3D):
(Ad)? = (Ax)? + (Ay)*+(Ax)?

@ Minkovsky metric (special relativity) (4D):
ds? = dx? + dx3 + dx§ - cdt?

@ Metric in general relativity (4D):

@ consider two events, where the difference in each of
their four generalized coordinates (x*, u =0,1,2,3) is
an infinitesimal quantity

Q@ ‘distance” between these events is given by:

ds? = 8w dxtdx”
gu = components of the metric tensor (a 4 x 4 matrix )
(compact writting of the metric tensor, aka, line
element)

Q@ metric tensor at each point of the space-time is
covariant, symmetric (g,, = g,,.), and nondegenerate
(det g, # 0), with a signature of either -2 or 42
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@ for any vector v#, the

metric assigns the real
number ||v|]2 = g, vAvY,
where ||v|| is the norm of
the vector

in GR the space-time is a
pseudo-Riemannian mani-
fold, thus:

vector squared norm can
be positive, negative, or
null, and consequently,
the vector is called time-
like, space-like, or null

Space-like and time-like vectors

t
timetlike
space— like
time —like\
%
Time Event horizon

Singularity
Space Space | P

wikipedia
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About general relativity
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Introduction

GR is a result of Einstein's attempt to find the relativistic

equivalent of Poisson’s equation | V2¢ = —47Gp |, where
 is the gravitational potential of a distribution of matter
with the density p and G is the constant of gravitation

heuristically, the first step is to replace the mass density
with the time-time component of the tensor describing a
physical system, in the limit of a weak field

tensor in question is the stress energy-momentum tensor
of the matter: m

second step is to look for a tensor whose components
involve the metric tensor and its first and second deriva-
tive, assuring a second-order partial differential equation
generalizing the Poisson equation, whose divergence van-
ishes
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inireduction @ quantity which distinguishes between a flat and curved

space-time is the Riemann tensor, whose trace is the Ricci
tensor R,

@ in covariant form, Einstein's equations are:

1 81 G

R;UJ - Eg;u/R = ?Tm/

@ left hand side = so-called Einstein tensor , where
R = R, = g""R,, is the curvature scalar

@ Enstein’s eq. shows that the gravitational field can be
described by a purely geometric quantity, its source being
the matter tensor



@ in covariant form, Einstein's equations are:
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Introduction 1 8T G

R;U/ - Eg;u/R = ?Tm/

@ in GR general relativity, there is complete freedom in
choosing the coordinate system; i.e., a given space-time
can be represented by different coordinates

@ even though the metric tensor components depend on
the coordinate system, the space-time itself does not

@ the physical events happen independently of our obser-
vations; it must be possible to express physical laws that
take the same form whatever coordinate system one chooses

@ thus, the laws are called covariant, and Einstein's princi-
ple is the principle of general covariance

@ all physical laws that hold in flat space-time can be ex-
pressed in terms of vectors and tensors, provided that the
derivatives are replaced with the covariant derivative



Schwarzschild solution for non-rotating BH
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Introduction

@ first solution of the Einstein’s vacuum field equations was
found by Schwarzschild (1916)

@ assumed that the field outside of a distribution of mass M
does not change with time and has a spherical symmetry

ds? = — (1 =) a2 + (1 - i:)*l dr? + 2 (d6? + sin® 0 dg)

@ r, =2MG/c? is the Schwarzschild radius

@ factor (1 — rs/r) in the second term reflects the curvature
of the three-dimensional space-time



Schwarzschild solution for non-rotating BH
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Introduction
@ first solution of the Einstein's vacuum (T,, = 0) field
equations was found by Schwarzschild (1916)

@ assumed that the field outside of a distribution of mass M
does not change with time and has a spherical symmetry

ds? = — (1 =) a2 + (1- i:)_l dr® + 2 (d6° + sin® 6 dg)

@ rate of the flow of the physical (proper) time, 7, at a
given point does not coincide with the t-coordinate. It is
specified by d7 = \/—g dt

@ far from the gravitational source (r — o0), g — 1
and, therefore, dm = dt; that is, t is the physical time
measured by an observer removed to infinity



Schwarzschild solution for non-rotating BH
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Introduction

@ first solution of the Einstein’s vacuum field equations was
found by Schwarzschild (1916)

@ assumed that the field outside of a distribution of mass M
does not change with time and has a spherical symmetry

ds? = — (1= %) de2+ (1~ irs)_l dr? + 2 (d6® + sin® 0 dg)

s
r

@ parameterization t = const for the events means simul-
taneity in the entire reference frame for the observers
being at rest in this frame

@ Schwarzschild’s solution becomes singular at r = ry or
r = 0. On the surface r = ry, the norm of the time-like
Killing vector is g+ = 0, so that the world lines of the
particles becomes null (or light-like)



Kerr black holes in Boyer-Lindquist coordinates
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Introduction

@ Kerr space-time symmetries, Killing vectors:
§t = (8t)’ §p = (8¢)
@ line element: ds® = guvdxtdx”, n=10,1,2,3

@ in geometric units G = ¢ = 1 and metric signature
(= + 4+, +)

@ Kerr (1963) metric in Boyer-Lindquist (1967) coordinates
(t,r,0,0):

z = (r* + a*)'sin 6 cos [p — tan™* (a/7)],
y = (" + a*)sin 9sin [p — tan™* (a/r)],

z =1 Cos 6,



Kerr black holes in Boyer-Lindquist coordinates
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Introduction @ Kerr space-time symmetries, Killing vectors:
e = (0r), &p = (9p)

@ line element: ds® = guvdxtdx”, p=20,1,2,3

@ in geometric units G = ¢ = 1 and metric signature
(_a+7+7+)
@ Kerr (1963) metric in Boyer-Lindquist (1967) coordinates
(t,r,0,0):
2Mr 4Mar sin® 6 )X
2[4 <&r 2 TMarsin-u 02
ds® = <1 v )dt v dtd¢+Adr

2Ma?rsin? 6
Y

+ Xdo? + <r2 +a%+ ) sin? 0 d¢?

geometrical functions: A = r?—2Mr+a°, ¥ = r’+a° cos?

a = J/(Mc), BH spin
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Kerr black holes in Boyer-Lindquist coordinates

Introduction @ Kerr space-time symmetries, Killing vectors:

§e = (0r), §p = (9p)

@ line element: ds? = guvdxtdx”, n=10,1,2,3

1 and metric signature

@ Kerr (1963) metric in Boyer-Lindquist (1967) coordinates

@ in geometric units G = ¢ =
(_7+7+7+)
(t,r.0,0):
g 0
0o =
.(I/Il/ = () 3
916 0

geometrical functions: A = r>—2Mr+a%, ¥ = r’+a° cos

0
0
)

0

gto
0
0

Yoo

2

a=J/(Mc), BH spin
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@ energy-momentum tensor: T,

e @ conservation laws: energy: E = T - 9/0t and angular

Plot orbits

momentum: J=T -9/0¢

@ event horizon = singularity of the BL coordinates, A = 0:

re=M=xzVM?—a2=r(l+v1-a,)

ry = GM/c? gravit. radius
0

ergosphere outer horizon (r,)

a, =afry, —1<a, <1

BH spin parameter

g

static limit (r,) inner h(;rizon (r)
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@ frame-dragging effect: nothing inside the ergosphere can
NP remain at rest with respect to distant observers, it must
co-rotate with the BH rotation

@ to study particle motion we need a reference frame which
does not rotate: locally non-rotating frame of zero angu-
lar momentum observers (ZAMOs)

a.=0.95

N
~
I

— Q, (prograde limit)
o (frame dragging)
— Q (retrograde limit)

angular velocity (x c3G'M™)

radius r. = r/ry N



loana Dutan

@ ergosphere (stationary limit surface): time-like Killing
vector becomes null:

Plot orbits

Et- 6 =80 =0= rg=rg[l+(1— a2 cos? 0)1/2]

(K%I)Q:W/2 =2 Iy

i,

radius r.
|

05 1
spin parameter a, = a/r,



Penrose process (1969)
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Plot orbits

@ Starting from outside of the ergosphere: a particle of en-
ergy E(© splits as it enters the ergosphere of the black
hole into a particle with energy E()) < 0 which is cap-
tured by the hole, and a second particle with energy
E®?) = E©) 4+ |EMW)| which escapes to infinity (top view)

@ energy (mass) extraction 20.7%

E©®

E®

Killing
horizon
ergosphere
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Plot orbits

@ BH spin-down:

2 2 J?
M= = Mirr + —
2
4'/\/lirr
M;,, — BH irreducible mass
J? . . . . .
— the contribution of the rotational kinetic energy

42

Irr.

to the square of the inertial mass of the black hole —
this rotational energy is being extracted by the Penrose
processes
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@ Bardeen (1972) derived the equations governing the par-
ticle trajectory for orbits in the BH equatorial plane

@ for circular motion, the particle specific energy and an-
gular momentum are:

Plot orbits

r3/2 — o2Mrl/2 4 aMm1/2
El=E/m=
r3/4(r3/2 _ 3Mr1/2 + 23/\/]1/2)1/2

+M2(r?2 F 2aMY2r1/2 4 2?)
r3/4(r3/2 — 3Mrt/2 £ 2aM1/2)1/2

L'=1L/m=

@ particle angular velocity is:

d¢ M1/2
T dt T AR M2
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Orbit calculations

@_ circular orbits do not exist for all radii; the denominator

in egs. for ET and LT must have a real value
32 _ 3Mr/2 £ 2aMm1/2 >0

Photon orbits: obtained from the limiting condition in
eq. above

fone = 2 {14 cos [2/3cos ! (Fa,)] }

At r = rons, ET becomes infinity, therefore it is a photon
orbit

Marginally bound orbits: an unbound circular orbit is
for Et > 1. The marginally bound orbits correspond to
ET = 1, for particles falling towards the BH from rest, as
seen at infinity,

rmb*:2:Fa*+2(1:Fa*)1/2 .

A particle with an orbit r < ry, falls directly into the BH
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Onbic cautatios @ Innermost stable (circular) orbits: Bound circular orbits
are not all stable. The condition of stability implies a
maximum binding energy of the particles in the BH grav-
itational potential (1 — ET), which gives a minimum par-
ticle angular momentum

Fms« =3+ 22 F[(3—21) 3+ 21 + 22)]/?

=1+ (1 . )1/3 |:(1 +a )1/3 ( a*)1/3

(33 + Zl ) 1/2
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@ in the theory of thin accretion disks (Novikov & Thorne
1973), the inner edge of the disk is located at the inner-
orbt clclations most stable radius
@ when the disk particles reach this radius, they drop out
of the disk and go directly into the BH

@ here, BH is represented by the stretched horizon

innermost disk innermost \ Static limit
Qu>Qp stable orbit

N frame dragging

spin parameter a.



Kerr-Schild solution for rotating black holes
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Orbit calculations

ds® = — (1 — 22’\/") dt® + (1 + ZZMr> dr? + Y.do?

pu

4Mr 4Mrasin? 6
v dt dr — ?dt do

—2asin%0 <1 + 22Mr> drd¢

2M
+ [(r2 +2%) + T 22 in? 0] sin? 0 d¢?

_|_

unde ¥ = r? + a? cos? 6



Kerr-Schild solution vs Kerr in BL coordinates
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Plot orbits

Orbit calculations

lapse function

05—
L a.=085
L —— Kerr-Schild
—— Boyer-Lindquist
0 . | |
0 2 4

3]
radius r/r



Numerical simulations for rotating black holes
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@ Einsten's equations do not explicitly describe the time
evolution of a system

@ to produce numerical solutions of the Einstein equations,
the equations are recast into a so-called 3+1 formula-
tion (in which the coordinate time is split from the three
spatial coordinates)

ds® = g/de‘udX‘u = _azdt2+’Y,‘j(dxi+ﬁidt)(dxj+ﬂjdt)

: P_"ax' R
strd)——2 *
dr=odt

x'=const . x'+dx'= const



General Relativistic MHD: GRMHD
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Orbit calculations

@ 4D stress energy-momentum tensor:
THY — Tf!lﬁlid"i_ T (v =0,...,3)

@ Ideal MHD: the fluid is considered to be a perfect
conductor (of infinite conductivity)

@ GRMHD equations form a set of 8 non-linear hyperbolic
PDEs.: conservation of rest mass, conservation of
energy and momentum, and evolution of magnetic field
(Maxwell's induction equation)

@ Plus equation of state for fluid and V - B = 0 condition
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In a compact form, the evolution equations of GRMHD can be written as

Orbit calculations

1 a(\/S/U)Jr 1 a(\/@F):S
Vgl o Vgl o

where the quantities U (conserved variables), F (fluxes), and S (source

terms) are
D D'
Sj Ti
5 T |’ K oT"—Dv" |’
B 7B/ — v/B!
0

6gv'
T (% - T5.0)
ol
o (1w ke o, )
Oi

S=
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Orbit calculations

&% (BY/ko)

@ First GRMHD simulations of jet formation (koide+ 1998, 2003)

@ energy of the spinning BH is extracted magnetically
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Plot orbits

Orbit calculations 200

-100.

~200}-

~200 100 b 100 1200 100 b 10 200

@ GRMHD simulations for tilted thin disk simulations;
magnetized polar outflows form along the disk rotation

aXIiS (Liska+ 2018)



General Relativistic PIC: GRPIC
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@ GRPIC simulations of jet formation (watson-Nishikawa 2010)

@ tensor form of the Maxwell and Newton-Lorentz equa-
tions with Kerr-Schild solution

5 4m
F,c«;‘j = Do

: ¢ 0 B* -BY —F
Fapny + Foya + Frasp = 0 ps_| B0 B
m du"+Fagd:v”‘ — oFt | B -B 0 —E
dr " dr dr = E* B E* 0

F,

P

Fii Fis Fi
F

The Maxwell tensor field components on
a Yee lattice; they are defined on the face Fu J

and edge of the computational cube




loana Dutan

Introduction
Plot orbits

Orbit calculations

Radiation from
relativistic jets
using PIC
simulations

Conclusions
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Key points
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Radiation from

reltivitic et @ calculate spectra self-consistently, in the sense that the
simulations spectra should be obtained by tracing particles directly

from PIC simulations without making assumptions
about the magnetic field, particle orbit, and so forth,
and by solving the Maxwell equations at the same time
@ spectra from electrons accelerated in a cylindrical
relativistic jet injected into an ambient plasma at rest

@ how does an initially applied toroidal magnetic field
affect the growth of plasma instabilities — particle
acceleration — emission of electromagnetic radiation
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Radiation from
relativistic jets
using PIC
simulations

@ fields are discretized on a

finite 3D mesh (Yee lattice):
electric fields on cell edges,
magnetic fields on cell faces;
maintains V- B = 0;
2nd-order accurate in space
interpolate fields at particle
position

these fields are used to
advance particle velocity in
time via Lorentz force;
leapfrog:

2nd-order accurate in time
charges and currents are then
used as source terms to
recalculate fields

X

Radiation from relativistic jets

using PIC
z
(ij+1,k+1)
E, B
By
Gk | g
E, B,
(i+1,,k) (i+1,+1,k)

o0 o0
I !

‘ |

I TR e N
s sw

T e

£

dB=-VxE,

n-1/2

n+1/2

JE=VxB-J]
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Radiation from
relativistic jets
using PIC
simulations

ePe

large scale simulations with rjz = 100A (meii+ 2023)
setting: ' = 15,100 and By = 0.5,0.1

method based on calculated the retarded potentials

(Hededal 2005, Nishikawa+ 2009)

d>W _ pocq?

dQdw 1673

/ *nx[(n—p)xf]
—00 (1 - 6 )2
select about 10000 jet electrons and follow them for
15000 steps (At = 0.005 w;, ) for about x = 25A

431

« ramdomly selected jet electrons

SECIE

331

600

I
700 800
Xi

I
900

f 7nr0

’
)

dt

I
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Radiation from
relativistic jets
using PIC
simulations

et jet with I = 15 e - it jet with [ = 15
50 50
40 40
30 ‘ 30
$20 220
10 10
0 0
-10 -10
200 400 600 800 1000 200 400 600 800 1000
X/n X/n
e jet with I = 100 e~ - it jet with I = 100
150 - 150
120 120
= 90 = 90
3 3
60 60
30 30
0 0
200 400 600 800 1000 200 400 600 800 1000
X/A X/A

X - v distribution of jet (red) and ambient (blue)
electrons for jets with By = 0.5, at t = 725w;e1
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Radiation from
relativistic jets
using PIC
simulations

et jet with I = 15 e - it jet with [ = 15
50 50
40 40
30 ! 30
320 220
10 10
0 0
~107""360 400 600 ~ 800 1000 ~107""360 460 600 800 1000
X/A X/
et jet with I = 100 e - it jet with I = 100
150 150
120 120
=90 %
~ 60 ~ 60
30 30
0 0
200 400 600 800 1000 200 400 600 800 1000
X/A X/

@ x - yvy distribution of jet (red) and ambient (blue)
electrons for jets with By = 0.1, at t = 725w;e1
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Radiation from
relativistic jets
using PIC
simulations

et jet with I =15 e -iT jet with I =15
M KKHI

100 200 300 400 500 600 700 800 900 1000 1100 100 200 300 400 500 600 700 800 900 1000 1100
Xia Xia

eT jet with I = 100 e - it jet with I = 100
MI kKHI

@ Color maps of the B, magnetic field with arrows

depicting the magnetic field components in the x — z
plane for jets with By = 0.5, at t = 725u)1;e1

@ maximum and minimum are (a): +£3.916, (b): +4.140,

(c): £1.231, and (d): £0.5997
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~-iT jet with I = 15

100 200 00 800
X/

900 1000 1100

Radiation from
relativistic jets
using PIC
simulations

@ color maps of the B, magnetic field with arrows
depicting the magnetic field components in the x — z
plane for jets with By = 0.1, at t = 725%;;1

@ maximum and minimum are (a): £2.127, (b): £2.178,
(c): £0.7419, and (d): +0.2853
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et jet with I =15 e -iT jet with I =15
10' 10
8 "
510 %10
B - o s
%10 Seat %10 PRTE= seme=TT
Byl Botpee
Radiation from ° °
s 10? 10
relativistic jets - . . . . . . . . . . .
i 10 10 10 10 10 10 10 10 10 10 10 10
using PIC W/ipe W/wpe

simulations

e - it jet with I = 100

s
510 5!
b1 5
<}l <)l
210 210t
© o

10? 10?

10' 10? 10° 10* 10° 10° 10' 10% 10° 10* 10° 10°
W/Wpe W/Wpe

@ synthetic spectra for e* jets (left panels) and for e - it
jets (right panels).
@ continuous line: By = 0.5 and dashed lines: By = 0.1

@ red lines: spectra for a head-on emission of jet
electrons; orange lines: 5°-off emission of radiation
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Radiation from
relativistic jets
using PIC
simulations

@ fields are discretized on a

finite 3D mesh (Yee lattice):
electric fields on cell edges,
magnetic fields on cell faces;
maintains V- B = 0;
2nd-order accurate in space
interpolate fields at particle
position

these fields are used to
advance particle velocity in
time via Lorentz force;
leapfrog:

2nd-order accurate in time
charges and currents are then
used as source terms to
recalculate fields

X

Radiation from relativistic jets

using PIC
z
(ij+1,k+1)
E, B
By
Gk | g
E, B,
(i+1,,k) (i+1,+1,k)
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Radiation from
relativistic jets
using PIC
simulations

ePe

large scale simulations with rjz = 100A (meii+ 2023)
setting: ' = 15,100 and By = 0.5,0.1

method based on calculated the retarded potentials

(Hededal 2005, Nishikawa+ 2009)

d>W _ pocq?

dQdw 1673

/ *nx[(n—p)xf]
—00 (1 - 6 )2
select about 10000 jet electrons and follow them for
15000 steps (At = 0.005 w;, ) for about x = 25A

431

« ramdomly selected jet electrons

SECIE

331

600

I
700 800
Xi

I
900

f 7nr0

’
)

dt

I
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Radiation from
relativistic jets
using PIC
simulations

et jet with I = 15 e - it jet with [ = 15
50 50
40 40
30 ‘ 30
$20 220
10 10
0 0
-10 -10
200 400 600 800 1000 200 400 600 800 1000
X/n X/n
e jet with I = 100 e~ - it jet with I = 100
150 - 150
120 120
= 90 = 90
3 3
60 60
30 30
0 0
200 400 600 800 1000 200 400 600 800 1000
X/A X/A

X - v distribution of jet (red) and ambient (blue)
electrons for jets with By = 0.5, at t = 725w;e1
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Radiation from
relativistic jets
using PIC
simulations

et jet with I = 15 e - it jet with [ = 15
50 50
40 40
30 ! 30
320 220
10 10
0 0
~107""360 400 600 ~ 800 1000 ~107""360 460 600 800 1000
X/A X/
et jet with I = 100 e - it jet with I = 100
150 150
120 120
=90 %
~ 60 ~ 60
30 30
0 0
200 400 600 800 1000 200 400 600 800 1000
X/A X/

@ x - yvy distribution of jet (red) and ambient (blue)
electrons for jets with By = 0.1, at t = 725w;e1
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Radiation from
relativistic jets
using PIC
simulations

et jet with I =15 e -iT jet with I =15
M KKHI

100 200 300 400 500 600 700 800 900 1000 1100 100 200 300 400 500 600 700 800 900 1000 1100
Xia Xia

eT jet with I = 100 e - it jet with I = 100
MI kKHI

@ Color maps of the B, magnetic field with arrows

depicting the magnetic field components in the x — z
plane for jets with By = 0.5, at t = 725u)1;e1

@ maximum and minimum are (a): +£3.916, (b): +4.140,

(c): £1.231, and (d): £0.5997
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~-iT jet with I = 15

100 200 00 800
X/

900 1000 1100

Radiation from
relativistic jets
using PIC
simulations

@ color maps of the B, magnetic field with arrows
depicting the magnetic field components in the x — z
plane for jets with By = 0.1, at t = 725%;;1

@ maximum and minimum are (a): £2.127, (b): £2.178,
(c): £0.7419, and (d): +0.2853
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@ synthetic spectra for e* jets (left panels) and for e - it
jets (right panels).
@ continuous line: By = 0.5 and dashed lines: By = 0.1

@ red lines: spectra for a head-on emission of jet
electrons; orange lines: 5°-off emission of radiation
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@ self-consistently calculate the spectra from PIC simula-
tions
Comdluions @ presence of helical fields suppresses the growth of the

kinetic instabilities, such as the Weibel instability, and
later on Ml and kKHI

@ further calculations for different setup of the simulations,
e.g., different particle distribution at the injection, plasma
quantities, larger simulation grids

@ need of allocation for run time of very large PIC simula-
tions, also on Texascale Days at Frontera, TACC
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