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AGN = galaxies whose nucleus spectrum cannot be explained by
standard stellar physics, e.g., a dense stellar cluster of massive
stars or a stellar mass BH
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spinning supermassive
BH, M ∼ 107

− 109 M⊙,
surrounded by an accre-
tion disk

AGN jets: vjets ∼ 0.9 −

0.995c or γ = 2− 10 (bulk
Lorentz factor)
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Ioana Duţan Kinetic Kelvin-Helmoltz instability – 6/19

UltravioletVisibleRadio/Infrared

synchrotron
radiation

blackbody
radiation

blue bump

absorption lines
lu

m
in

os
ity

wavelength

power-law (non-thermal) radiation (ν−α): jets

blackbody (thermal) radiation:accretion disk
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M87 spectral energy distribution



Synchrotron radiation from AGN jets: M87
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synchrotron emission over
the whole continuum spec-
trum
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better resolution with VLBI (Very Long Base Interferometry);
shorter wavelengths

corelator: interference of the coherent waves from VLBI sites
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Blandford-Payne mechanism(1982): MHD flow – the jet can be
launched and collimated by centrifugal and magnetic forces– the
disk particles are driven upwards by thegradient of the pressurein
the disk to fill the corona around the disk and are further accelerated
by thegradient of the magnetic pressure
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BH accretion disk
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Blandford-Znajek mechanism(1977): electromagnetically extrac-
tion of energy and angular momentum of a BH (“BH dynamo”
mechanism)→ the energy flux of the jets is provided byconver-
sion of the BH rotational energy into Poynting flux, which is then
dissipated at large distances from the BH by current instabilities
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Marscher2000

structure and emission of a radio-loud AGN

helical magnetic fields

synchrotron and inverse Compton radiation
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plasmas may be collisional (e.g., fusion
plasma) or collisionless (e.g., space plasma)

Debye length(λD) = thickness of the cloud (sheath)

L = length of a system;if L ≫ λD → quasi-neutral plasma(ni ≃

ni ≃ n, plasma density)

ND = particles in a Debye sphere;if ND ≫ 1→ collective behavior

τc = Coulomb collision time betweene−’s and ions;ω = frequency
of a variation in the plasma;if τcω ≫ 1→ collisionless

it is the characteristic frequency by which quasi-neutrality in a
plasma can be violated if no external electric fields are applied
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space plasmas differ by charge (ej), mass (mj), temperature (Tj),
density (ρj), bulk speed (uj), and thermal speed (vj = (kBTj/mj)

1/2)
of the particles (of species j) by which they are composed

they are mostly magnetized (internal and external magneticfields)

space plasmas are treated in several ways:

particle-in-cell(PIC) (microscopic –kinetic)

magnetohydrodynamics, MHD (macroscopic –fluid,
high-density plasma)

hybrid (fluid electron and kinetic ions)

MHD with test particles (fluid mixed with particles)

particles with photons
kinetic theorydescribes the plasma statistically, i.e. the collective
behavior of the various particles under the influence of their self-
generated electromagnetic fields; at low densities (particle colli-
sions are negligible)
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because of a multitude of free-energy sources in space plasmas, a
very large number of instabilities can develop:

comparable to macroscopic size (e.g., bulk scale of plasma)→

macroinstability(affects plasma globally)

comparable to microscopic scale (e.g., gyroradius)→

microinstability(affects plasma locally)

generation of instabilityis the general way of redistributing energy
which was accumulated in a non-equilibrium state

theoretical treatment:

macroinstability:fluid plasma theory(MHD)

microinstability:kinetic plasma theory(PIC)
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a small perturbation in quantity A, which leads to a consistent per-
turbation in quantity B. Aninstability occurs if the perturbation in
quantity B, in turn, enhances the initial perturbation in quantity A

plasma instabilities for astrophysics are:

Weibel instability: driven by the thermal anisotropy
(anisotropic distribution function); currentfilamentation

KH instability: driven by velocity shearing plasmas

both instabilities manifest in currents that generate magnetic fields
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PIC simulations of Weibel instability (Nishikawa et al. 2005+):
Weibel instability createsfilamented currents and densitiesalong
the jets

Weibel instability mediates collisionless relativistic shocks
(Medvedev 2009)

(a) linear regime = current filamentation; (b) saturation;
(c) nonlinear regime = filament coalescence



Weibel instability

OVERVIEW

INTRODUCTION
AGN spectra

AGN unification

Spectrum

Synchrotron

Jet formation

Jet structure

Space plasmas

Weibel instability

KH instability

PIC
SIMULATIONS

RESULTS

CONCLUSIONS

Ioana Duţan Kinetic Kelvin-Helmoltz instability – 11/19

Nishikawa et al. (2005+)
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term Kelvin-Helmholtz was originally ap-
plied to a particular set of gravity-wave phe-
nomena at discontinuities (Helmholtz 1868)

its signature: vortices

in real ocean and atmosphere

in space strong velocity shears are present,
triggering the collisionless KHI

Jupiter (red spot), from the solar wind into planetary magneto-
spheres, in accretion disks, jets
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Alves et al. (2012): OSIRIS code (Fonseca et al. 2002)

two counter streaming unmagnetized flows; equal densities;
(non)relativistic flows;e−p+ ande−e+

here: nonrelativistic flows,e−p+

x1 x2 x1
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observations of the TeV BL Lac objects show brightenings and
rapid variability in their TeV emission→ high Lorentz factor flows
occurring at smaller scale→ ultra-relativistic bulk motionof the
(inner) jet

radio observations with VLBIof the pc-scale jet structure indicate
a broad,slower (albeit relativistic) moving outflow

a two-component jet structure: fast, low-density inner spine and
slow, high-density sheaths

instability of relativistic jet is important forunderstanding the ob-
served jet structure & radiation
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Ioana Duţan Kinetic Kelvin-Helmoltz instability – 15/19

TRIdimensional STANford (TRISTAN) code (Buneman,
Nishikawa, & Neubert 1993)

Modified by Ken Nishikawa for studying jets

self-consistently solves the full set of Maxwell’s equations, along
with the relativistic equations of motion for the charged particles

Maxwell’s equations, Lorentz’s force, Poisson’s equation:

∂ET

∂t
= c2∇×BT −JT,

∂BT

∂t
=−∇×ET

FL = 4πqT(ET +v×BT), ∇ ·ET = ρ

discretize the Maxwell’s and Lorentz’s force equations on agrid
with spacing∆x andtimestep∆t

Courant condition: c∆t/∆x =C, C < 1 (usually,C < 0.5 for stabil-
ity)
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fields are discretized on a finite 3D mesh (the
computational grid); 3D Yee mesh is used to
store the magnetic and electric fields

a tri-linear interpolation function (linear in
each spatial dimension) is used to interpolate
the electric and magnetic fields to the parti-
cles positions

PIC uses computational particles
(called macro-particles) composed of
ions and electrons

weight factors for each node volume
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fields are discretized on a finite 3D mesh (the
computational grid); 3D Yee mesh is used to
store the magnetic and electric fields

a tri-linear interpolation function (linear in
each spatial dimension) is used to interpolate
the electric and magnetic fields to the parti-
cles positions

these fields are then used to advance the velocity of the particles in
time via the Lorentz force equation

charges and currents derived from the particles velocitiesand posi-
tions are then used as source terms to re-calculate the electromag-
netic fields
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a stationary plasmain the upper and lower quarters of the simula-
tion box and arelativistic core jetwith γ = 15 in the middle-half of
the box; unmagnetized

size of the box: 1005×205×205∆3

8 particles/cell

mass ratio of ion and electron,mi/me = 20

periodic boundary conditions in all directions
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(b)

magnetic field structures generated by shearing relativistic electron-
ion flows taken at timet = 70ω−1

pe ; By is plotted in they− z plane
at the center of the boxx = 500∆

(a) jet out of the plane, in thex− z plane at the center of the box
y = 100∆

(b) Bx (black),By (red), andBz (blue) atx = 500∆ andy = 100∆



R-PIC code

OVERVIEW

INTRODUCTION

PIC
SIMULATIONS

RESULTS
R-PIC code

CONCLUSIONS
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(c) shows thex component of current; the relativistic jet is out of
the plane and the positive current is generated at the core jet side
and the negative current is generated in the sheath side

(d) same as (a) but it shows one fifth of the simulation size to show
the details
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we use the R-PIC code developed by Nishikawa et al. (2005+) to
simulate thegeneration of magnetic fieldsat the separation layer
between two plasma sheaths by theKelvin-Helmholtz instability

such generation of the magnetic fields isrelevant for synchrotron
modelsthat operate in astrophysical jets

further work: calculate the radiation emitted by charged particles in
interaction with such magnetic fields, including the time evolution
of a spectrum, and compare with observational data

compare the numerical results with those obtained by Alves et al.
(2012)
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