Large Scale Structure without Dark Matter

TeVeS, relativistic gravitation theory for the MOND paradigm

Ioana Duţan

AGN seminar, 5 July 2007

Alternative Gravities vs. Dark Matter

Each galaxy has its own history of formation-evolution-interaction!

Ioana Duțan, Large Scale Structure without Dark Matter - p.2/18

Outline

- Milgrom's MOND paradigm
- Bekenstein's proposal for a covariant theory: TeVeS
- Cosmology with TeVeS
- Some remarks...

The "missing mass" problem or "acceleration discrepancy": Galaxy Rotation Curve - Expected and Observed

Two observational facts about spiral galaxies:

- rotation curves are asymptotically flat
- Tully-Fisher law (1977): rotation velocity in spirals vs. luminosity

 $L \propto V^4$

- Discrepancies between the Newtonian dynamical mass and the direct observabile mass in large systems has two possible explanations:
 - either these systems contain DM
 - or gravity on these scales is not described by Newtonian theory
- MOdified Newtonian Dynamics (MOND) has been proposed by Milgrom (1983) as an alternative to the DM:
 - as a particle's acceleration approaches some limiting small value a_0 , Newton's second law breaks down

$$m \,\mu\left(\frac{a}{a_0}\right) \mathbf{a} = \mathbf{F}$$

An interpolation function derived empirically joints the two regimes: $\mu(x \ll 1) \approx x$ and $\mu(x \gg 1) \rightarrow 1$ with $x = \frac{a}{a_0}$

If we set the effective gravitational force $g = \sqrt{g_N a_0}$ equal to the centripetal acceleration V^2/r , then

 $V^4 = GMa_0!$ TF mass-velocity relation

- The observed TF relation for Ursa Major spirals (Sanders & Verheijen 1998) gives $a_0 \approx 10^{-8} \text{ cm s}^{-2}$.
- Note: data for LSB galaxies became available some 10 years later after Milgrom made its predictions.

FIRST high-resolution simulation of the structure formation in a MONDian universe: Knebe & Gibson, 2004

Adhere to an existing Poisson solver mapping a_N to aby using the cosmological *N*-body code MLAPM (open source); AMIGA

Figure 1: ACDM cosmological simulation at redshift z = 0 (left panel) vs. a simulation incorporating MOND and using the same initial conditions (right panel).

- If z > 4 5 their simulations show less galaxies than data
- influence of the cosmological constant Ω_{λ} is ignored
- do not include the last results of Bekenstein (2004) and Skordis et al. (2006)

- MOND can be interpretated as providing an universal profile of dark halos $a_0 f[GM/a_0r^2] = GM_{DM}(r)/r^2$, but CDM does not involve this universal scale a_0 .
- a_0 is of order of $cH_0 \Rightarrow$ Cosmological origin of a_0 ??
- Many successes (e.g., rotation curves & TF relation) but problems (cluster mass to light too large).
- MOND also predicts: LBS galaxies are DM dominated, no DM in HBS; no DM in the center of the galaxies (cusp problem in CDM).
- MOND is not a theory; it violates conservation of energy and of angular momentum.
- MOND is not complete: it does not specify haw to calculate gravitational lensing by galaxies and cluster of galaxies.

How to build relativistic theory – basic idea

 $\mu \vec{a} = \vec{\nabla} \Phi_N$ $\nabla^2 \Phi_N = 4\pi G \rho$ $ec{a} = -ec{
abla} \Phi$ $\vec{\nabla} \cdot \left[f\left(\frac{\nabla \Phi}{a_0}\right) \vec{\nabla} \Phi \right] = 4\pi G \rho$ **Dynamics** Gravity

Relativistic version:

Dynamics (geodesic eqs.) Gravity (Einstein eqs.)

 $a^{\mu} + \Gamma^{\mu}_{\alpha\beta} v^{\alpha} v^{\beta} = 0$

 $G_{\mu\nu} = 8\pi G T_{\mu\nu}$

common metric

 $g_{\mu\nu}$

"Bimetric" theories – use two different metrics:

 $g_{\mu\nu}$

"Physical" metric in geodesic eqs "Geometric" metric in Einstein eqs.

 $\tilde{g}_{\mu\nu}$

Bekenstein, 2004:

$$g_{\mu\nu} = e^{-2\phi} \left(\tilde{g}_{\mu\nu} + A_{\mu}A_{\nu} \right) - e^{2\phi}A_{\mu}A_{\nu}$$

• 2 Tensor fields $(g_{\mu\nu}, \tilde{g}_{\mu\nu})$ + 1 Vector field (A_{μ}) + 1 Scalar field (ϕ) there is also a nondynamical scalar field μ

• A_{μ} is a time-like 4-vector field s.t. $\tilde{g}^{\mu\nu}A_{\mu}A_{\nu} = 1$; $A_{\mu} = (-\sqrt{g_{00}}, 0, 0, 0)$

Total action of the system: $S = S_g + S_s + S_v + S_m$

$$S_{g} = \frac{1}{16\pi G} \int d^{4}x \sqrt{-\tilde{g}}\tilde{R}$$

$$S_{s} = -\frac{1}{16\pi G} \int d^{4}x \sqrt{-\tilde{g}} \left[\mu \left(\tilde{g}^{\mu\nu} - A^{\mu}A^{\nu} \right) \phi_{,\alpha}\phi_{,\beta} + V(\mu) \right]$$

$$S_{v} = -\frac{1}{32\pi G} \int d^{4}x \sqrt{-\tilde{g}} \left[K_{B}F^{\alpha\beta}F_{\alpha\beta} - 2\lambda(A^{\mu}A_{\mu} + 1) \right]$$

$$S_{m} = \int d^{4}x \sqrt{-g}L_{m} \left[g_{\mu\nu}, \chi^{A}, \nabla \chi^{A} \right]$$

 K_B = dimensionless constant, λ = Lagrange multiplier, $F_{\alpha\beta} = 2\nabla_{[\alpha}A_{\beta]}$, μ = nondynamical field with a free function $V(\mu)$

IMPORTANT!! TeVeS theory lies within the choice of the function $V(\mu)$!!

A choice of V will pick out a given theory!!

Bekenstein proposal:

$$V = \frac{3\mu_0^2}{128\pi l_B^2} \left[\hat{\mu}(4+2\hat{\mu}-4\hat{\mu}^2+\hat{\mu}^3) + 2ln(\hat{\mu}-1)^2 \right]$$

This potential will lead to the prescription proposed by Milgrom in the non-relativistic regime.

- There are 3 free parameters that appear in the TeVeS total action: μ₀, l_B, and K_B.
- Armed with this total action, Bekenstein (2004) and Skordis et al. (2006) solved for the evolution of the scale factor a of a homogeneous Friedmann-Robertson-Walker metric.

Skordis et al., 2006

- Homogeneous and isotropic spacetimes
- Two metrics: two scale factors... $a = be^{-\phi}$ \uparrow Physical Geometric

• Choose a coordinate system s.t. $A^{\alpha} = (1, 0, 0, 0)$

Modified Friedmann equation becomes

$$\tilde{H}^2 = \frac{8\pi G_{eff}}{3} \left(\rho + \rho_\phi\right)$$

where
$$G_{eff} = G \frac{e^{-4\phi}}{(1+\frac{d\phi}{d\ln a})^2}$$
 and $\rho_{\phi} = \frac{e^{2\phi}}{16\pi G} (\mu V' + V)$

- TeVeS modifications to the standard cosmology depend on the evolution of the scalar field ϕ .
- Ordinary fluid energy density ρ_X evolves as usual as

$$\dot{
ho}_X = -3rac{\dot{a}}{a}(1+w)
ho_X$$
 ,

where w is the equation of state parameter of the fluid.

- Relative densities Ω_i are defined as usual as $\Omega_i = \frac{\rho_i}{\rho_i + \rho_\phi}$.
- Variation of the action with respect to the field μ gives $\dot{\phi}^2 = \frac{1}{2}V'$.
- Finally, the scalar field evolves according to

$$\dot{\phi}=-rac{1}{2 ilde{\mu}}\Gamma,\,\, {
m where}\,\,\dot{\Gamma}+3 ilde{H}\Gamma=8\pi Ge^{-\phi}
ho_X(1+3w)$$

Cosmological tracking:

If
$$V' \propto \frac{\mu^2(\mu - 2\mu_0)}{\mu - \mu_0} \Rightarrow \Omega_{\phi} = \begin{cases} \frac{3}{2\mu_0} & \text{radiation epoch} \\ \frac{1}{6\mu_0} & \text{matter epoch} \end{cases}$$

BBN: $\Omega_{\phi} < 10^{-4}$ **Not Dark Matter!**

- Perturbations to the metric, matter, radiation, and TeVeS fields are governed by a set of coupled differential equations
- perturbations in the scalar field may induce enhanced growth in the matter perturbation – oscillate in the radiation epoch (Skordis et al., 2006)
- MOND universes compared to the CMB data
 - 1. MOND universe with $a_0 = 4.2 \times 10^{-8} \text{ cm/s}^2$: $\Omega_V = 0.17, \Omega_{\nu} = 0.17, \text{ and}$ $\Omega_{\nu} = 0.05$ (solid line) $\Omega_V = 0.95 \text{ and } \Omega_{\nu} = 0.05$ (dashed line)
 - 2. Λ CDM model (dotted line)

Some remarks...

- The success of MOND's phenomenology may signal a break down of the Newtonian gravity at small accelerations.
- Any competing model of DM should explains the success of the MOND, and the existence of an universal acceleration scale.
- Does the Bullet Cluster rule out the MOND paradigm?
- TeVeS-like models suffer from instabilities of the vector field; moreover, the free functions must to be fine-tuned.
- These difficulties may signal that MOND needs a more general framework than the (pseudo-)Riemannian geometry.
- Looking forward for any surprise!