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Introductory remarks

(General) Relativistic (Magneto) hydrodynamics

a (G)R (M)HD code is used to compute the flow of gas
around strong field gravity sources

used to study supernova collapse and formation of BH,
BH-BH binaries, NS-NS binaries, pulsar wind nebulae,
accretion disks, relativistic jets from AGN and
microquasars, etc.
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Introductory remarks

Propose of this material

to introduce or review some aspects of GR
to introduce the 3+1 decomposition of the spacetime
(in the Eulerian formulation)
to provide a small derivation of the conservative
systems of the hyperbolic PDE of the GRHD

Notes on the level of this material
if it is too easy, just treat it as review, perhaps from a
different perspective
if it is too fuzzy, concentrate on the concepts...
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General relativity background

metric element:

ds2 = gµν(x
µ)dxµdxν

for a flat spacetime of special relativity:

ds2 = −dt2 + dx2 + dy2 + dz2

ds2 < 0, interval is timelike; ds2 > 0, interval is spacelike; ds2 = 0, it is null

1D curve xµ(λ) in spacetime describes a series of events

timelike curve (worldline) is parameterized by the proper
time τ
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General relativity background

4-velocity is defined as: uµ = dxµ(τ)
dτ

in SR, the 4-velocity components are

uµ = (u0, u1, u2, u3) = (W,W~v), where W =
1√

1 − ~v2

imagine 2 particles with worldlines that meet at point A,
having 4-velocity uµ and vµ; their product is an invariant (it
can be evaluated in an arbitrary reference frame)(Fig. 1)

in particular, in the Lorentz reference frame comoving with
uµ you have

u
′

µ = (−1, 0, 0, 0), and then uµvµ = u
′

µv
′µ = −v

′0 = −W
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General relativity background
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3+1 Eulerian formulation
3+1 decomposition

spacetime is foliated into a set of non-intersecting
spacelike hypersurfaces, parameterized by a parameter
usually called time t, s.t., the evolution between these
surfaces is described by two kinematic variables

metric can be written in a particular way

ds2 = gµνdxµdxν = −α2dt2 + gij(dxi + βidt)(dxj + βjdt)

which in a component form is
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, where γij = gij i, j = 1, 2, 3

γij = 3-metric induced on each spacelike slice
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3+1 Eulerian formulation

γikγ
kj = δ

j
i ; gymnastics of indices βi = γijβ

j

decomposition of the volume associated with the 4-metric
into the volume associated with the 3-metric

√−g = α
√

γ , g = det(gµν), γ = det(γij)

let’s consider 2 close spacelike hypersuperfaces Σ(t) and
Σ(t + dt) (Fig. 2)

lapse function α describes the rate of advance of time
along a timelike unit vector normal to the hypersurface

spacelike shift vectors βi describe the motion of
coordinates within a surface
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3+1 Eulerian formulation

4-vector n
µ is the unit normal vector to the Σ(t)

nµ = (−α, 0, 0, 0), n
µ = (

1

α
,
−βi

α
)

Eulerian observers are observers having n as 4-velocity,
at rest in the slice Σ(t) and moving ⊥ to this slice with
clocks showing proper time

i.e., the basis adapted to the Eulerian observer frames is:

e(µ) = {n, ∂i}

4-vector uµ is the 4-velocity of some particle
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3+1 Eulerian formulation
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3+1 Eulerian formulation
Let’s translate the 4-velocity of a particle from the arbitrary
coordinate frame (S) to the Eulerian frame (S′)

S S’

P (t, xi) (t′, x
′i)

Q (t + dt, xi − βidt) (t′ + αdt, x
′i)

R (t + dt, xi + dxi) (t′ + αdt, x
′i + βidt + dxi)

4-velocity = vector ~PR / proper time τ

in the coordinate frame S: uµ = (dt,dxi)
dτ =

(

dt
dτ , dxi

dτ

)

in the Eulerian frame S′:

u
′µ =

(αdt, βidt + dxi)

dt
= (αu0, ui+βiu0) = αu0(1,

ui

αu0
+

βi

α
)
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3+1 Eulerian formulation
Lorentz factor as seen from S′ is: W = −nµuµ = αu0

3-velocity of particle in Eulerian frame: vi = ui

αu0 + βi

α

vi = γijvj = γij

„

uj

αu0
+

βj

α

«

=
1

αu0
γij(u

j + βju0) =

=
1

αu0
(γijuj + βiu

0) =
1

αu0
(gi0u0 + gijuj) =

ui

αu0

Normalization: −1 = gµνuµuν = −α2(u0)2 + γij(u
i + βiu0)(uj + βju0)=

= −α2(u0)2
»

1 − γij

„

ui

αu0
+

βi

α

« „

uj

αu0
+

βj

α

«–

= −α2(u0)2(1 − γijvivj)

Lorentz factor: W = αu0 = (1 − γijv
ivj)1/2
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General relativistic hydrodynamics
GRHD equations consist of the local conservation laws of
the matter current density and the energy-momentum
(stress-energy tensor) + fluid equation of state

rest mass flux (proportional to the baryon number flux) is:

Jµ = ρ0u
µ

ρ0 = rest mass density (baryon number density times average rest mass of the

baryons); u = fluid velocity

stress-energy tensor of an ideal fluid (without non-adiabatic

processes, s.a., viscosity, magnetic field, radiation)

Tµν = (ρ + p)uµuν + pgµν

ρ = total mass-energy density; p = pressure
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General relativistic hydrodynamics
useful relations: u0 = W

α , ui

W = vi − βi

α , ui

W = vi

CONSERVATIVE VARIABLES are measured by the
Eulerian observers, being defined as:

D = −Jµnµ = −ρ0u
µnµ = ρ0W, rest − mass density

Sj = −Tµ
νnµ(∂j)

µ = αT 0
j = α(ρ + p)u0uj =

= (ρ + p)W 2 uj

W
= (ρ + p)W 2vj , momentum density

E = Tµνnµnν = α2T 00 = α2[(ρ + p)u0u0 + pg00] =

= (ρ + p)W 2 − α2p
1

α2
= (ρ + p)W 2 − p, energy

derived conservative variable: τ = E − D
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General relativistic hydrodynamics

T 00 =
1

α2
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α
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T 0
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α
Si T i

j = Sj(v
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α
) + Pδi

j

differential form of baryon number conservation (continuity
equation) 1st GRHD equation
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General relativistic hydrodynamics
(Tµ

ν(eγ)ν);µ = Tµ
ν;µ(eγ)ν + Tµν(eγ)ν;µ = Tµν

“

(eγ)ν,µ − Γλ
νµ(eγ)λ

”

For γ = 0:

(Tµ
ν(e0)ν);µ = (Tµνnν);µ = (−αTµ0);µ = −
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2nd GRHD equation
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General relativistic hydrodynamics
For γ = j:
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3rd, 4th, and 5th GRHD equations
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General relativistic hydrodynamics
GRHD equations can be written in a conservation form as
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conservative variables fluxes source term

for curved spacetime, there exist source terms, arising from the spacetime
geometry

for Minkowski metric Σ = 0 and
√
−g =

√
γ = 1; strict conservation low is

possible only in flat spacetime
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General relativistic hydrodynamics

IMPORTANT!! Recovering the primitive variables from the
conservative ones, P =

[

ρ0, v
j , p

]

for conservative formulations, the time update of a given numerical algorithm is
applied to the conservative variables

after this update, the vector of the primitive variables must be re-evaluated as
those are needed in the Riemann solver

the relation between the 2 sets of variables is not in closed form and hence, the
recovery of the primitive variables is done by using a root-finding procedure
(Newton-Raphson scheme)
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General relativistic MHD
One have to include: evolution equations for magnetic field
(Maxwell equations – divergence free magnetic field and
induction equation) + frozen-in condition

Tµν = Tµν
fluid + Tµν

elmagm
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conservative variables fluxes source term

Primitive variables: P =
[

ρ0, v
j , p,Bj

]
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Remarks

GRMHD simulations of jets formation from Kerr BH
Y. Mizuno, K. Nishikawa, and S. Koide

Koide et al. (1998) – first 3D GRMHD simulations of jets
formation
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