General Relativistic Magnetohydrodynamics Equations Ioana Duţan

IMPRS Students Workshop
Berggasthof Lansegger, Austria, 28-31 Aug 2006

Introductory remarks

(General) Relativistic (Magneto)hydrodynamics

- a (G)R (M)HD code is used to compute the flow of gas around strong field gravity sources
- used to study supernova collapse and formation of BH, BH-BH binaries, NS-NS binaries, pulsar wind nebulae, accretion disks, relativistic jets from AGN and microquasars, etc.

Introductory remarks

- Propose of this material
- to introduce or review some aspects of GR
- to introduce the 3+1 decomposition of the spacetime (in the Eulerian formulation)
- to provide a small derivation of the conservative systems of the hyperbolic PDE of the GRHD
- Notes on the level of this material
- if it is too easy, just treat it as review, perhaps from a different perspective
- if it is too fuzzy, concentrate on the concepts...

General relativity background

- metric element:

$$
d s^{2}=g_{\mu \nu}\left(x^{\mu}\right) d x^{\mu} d x^{\nu}
$$

- for a flat spacetime of special relativity:

$$
d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}
$$

- $d s^{2}<0$, interval is timelike; $d s^{2}>0$, interval is spacelike; $d s^{2}=0$, it is null
- 1D curve $x^{\mu}(\lambda)$ in spacetime describes a series of events
- timelike curve (worldline) is parameterized by the proper time τ

General relativity background

- 4-velocity is defined as: $u^{\mu}=\frac{d x^{\mu}(\tau)}{d \tau}$
- in SR, the 4-velocity components are

$$
u^{\mu}=\left(u^{0}, u^{1}, u^{2}, u^{3}\right)=(W, W \vec{v}), \text { where } W=\frac{1}{\sqrt{1-\bar{v}^{2}}}
$$

- imagine 2 particles with worldlines that meet at point A, having 4 -velocity u_{μ} and v^{μ}; their product is an invariant (it can be evaluated in an arbitrary reference frame)(Fig. 1)
- in particular, in the Lorentz reference frame comoving with u^{μ} you have

$$
u_{\mu}^{\prime}=(-1,0,0,0), \text { and then } u_{\mu} v^{\mu}=u_{\mu}^{\prime} v^{\prime \mu}=-v^{\prime 0}=-W
$$

General relativity background

3+1 Eulerian formulation

3+1 decomposition

- spacetime is foliated into a set of non-intersecting spacelike hypersurfaces, parameterized by a parameter usually called time t, s.t., the evolution between these surfaces is described by two kinematic variables
- metric can be written in a particular way

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=-\alpha^{2} d t^{2}+g_{i j}\left(d x^{i}+\beta^{i} d t\right)\left(d x^{j}+\beta^{j} d t\right)
$$

- which in a component form is

$$
\left\|\begin{array}{ll}
g_{00} & g_{0 j} \\
g_{i 0} & g_{i j}
\end{array}\right\|=\left\|\begin{array}{cc}
\beta_{s} \beta^{s}-\alpha^{2} & \beta_{j} \\
\beta_{i} & \gamma_{i j}
\end{array}\right\|, \quad \text { where } \gamma_{i j}=g_{i j} i, j=1,2,3
$$

$\gamma_{i j}=3$-metric induced on each spacelike slice

3+1 Eulerian formulation

- $\gamma_{i k} \gamma^{k j}=\delta_{i}^{j}$; gymnastics of indices $\beta_{i}=\gamma_{i j} \beta^{j}$
- decomposition of the volume associated with the 4-metric into the volume associated with the 3-metric

$$
\sqrt{-g}=\alpha \sqrt{\gamma}, \quad g=\operatorname{det}\left(g_{\mu \nu}\right), \gamma=\operatorname{det}\left(\gamma_{i j}\right)
$$

- let's consider 2 close spacelike hypersuperfaces $\Sigma(t)$ and $\Sigma(t+d t)$ (Fig. 2)
- lapse function α describes the rate of advance of time along a timelike unit vector normal to the hypersurface
- spacelike shift vectors β^{i} describe the motion of coordinates within a surface

3+1 Eulerian formulation

- 4-vector n^{μ} is the unit normal vector to the $\Sigma(t)$

$$
\mathbf{n}_{\mu}=(-\alpha, 0,0,0), \quad \mathbf{n}^{\mu}=\left(\frac{1}{\alpha}, \frac{-\beta^{i}}{\alpha}\right)
$$

- Eulerian observers are observers having n as 4-velocity, at rest in the slice $\Sigma(t)$ and moving \perp to this slice with clocks showing proper time
- i.e., the basis adapted to the Eulerian observer frames is:

$$
\mathbf{e}_{(\mu)}=\left\{\mathbf{n}, \partial_{i}\right\}
$$

- 4-vector u^{μ} is the 4-velocity of some particle

3+1 Eulerian formulation

Fig 2. Geometrical interpmetation of α, β^{i}.

3+1 Eulerian formulation

- Let's translate the 4-velocity of a particle from the arbitrary coordinate frame (S) to the Eulerian frame $\left(S^{\prime}\right)$

	S	S^{\prime}
P	$\left(t, x^{i}\right)$	$\left(t^{\prime}, x^{\prime} i\right)$
Q	$\left(t+d t, x^{i}-\beta^{i} d t\right)$	$\left(t^{\prime}+\alpha d t, x^{\prime}\right)$
R	$\left(t+d t, x^{i}+d x^{i}\right)$	$\left(t^{\prime}+\alpha d t, x^{\prime}{ }^{i}+\beta^{i} d t+d x^{i}\right)$

4-velocity $=$ vector $\overrightarrow{P R} /$ proper time τ

- in the coordinate frame $S: u^{\mu}=\frac{\left(d t, d x^{i}\right)}{d \tau}=\left(\frac{d t}{d \tau}, \frac{d x^{i}}{d \tau}\right)$

』 in the Eulerian frame S^{\prime} :

$$
u^{\prime \mu}=\frac{\left(\alpha d t, \beta^{i} d t+d x^{i}\right)}{d t}=\left(\alpha u^{0}, u^{i}+\beta^{i} u^{0}\right)=\alpha u^{0}\left(1, \frac{u^{i}}{\alpha u^{0}}+\frac{\beta^{i}}{\alpha}\right)
$$

3+1 Eulerian formulation

- Lorentz factor as seen from S^{\prime} is: $W=-n_{\mu} u^{\mu}=\alpha u^{0}$
- 3-velocity of particle in Eulerian frame: $v^{i}=\frac{u^{i}}{\alpha u^{0}}+\frac{\beta^{i}}{\alpha}$

$$
\begin{aligned}
v_{i} & =\gamma_{i j} v^{j}=\gamma_{i j}\left(\frac{u^{j}}{\alpha u^{0}}+\frac{\beta^{j}}{\alpha}\right)=\frac{1}{\alpha u^{0}} \gamma_{i j}\left(u^{j}+\beta^{j} u^{0}\right)= \\
& =\frac{1}{\alpha u^{0}}\left(\gamma_{i j} u^{j}+\beta_{i} u^{0}\right)=\frac{1}{\alpha u^{0}}\left(g_{i 0} u^{0}+g_{i j} u^{j}\right)=\frac{u_{i}}{\alpha u^{0}}
\end{aligned}
$$

2 Normalization: $-1=g_{\mu \nu} u^{\mu} u^{\nu}=-\alpha^{2}\left(u^{0}\right)^{2}+\gamma_{i j}\left(u^{i}+\beta^{i} u^{0}\right)\left(u^{j}+\beta^{j} u^{0}\right)=$
$=-\alpha^{2}\left(u^{0}\right)^{2}\left[1-\gamma_{i j}\left(\frac{u^{i}}{\alpha u^{0}}+\frac{\beta^{i}}{\alpha}\right)\left(\frac{u^{j}}{\alpha u^{0}}+\frac{\beta^{j}}{\alpha}\right)\right]=-\alpha^{2}\left(u^{0}\right)^{2}\left(1-\gamma_{i j} v^{i} v^{j}\right)$
Lorentz factor: $W=\alpha u^{0}=\left(1-\gamma_{i j} v^{i} v^{j}\right)^{1 / 2}$

General relativistic hydrodynamics

- GRHD equations consist of the local conservation laws of the matter current density and the energy-momentum (stress-energy tensor) + fluid equation of state
- rest mass flux (proportional to the baryon number flux) is:

$$
J^{\mu}=\rho_{0} u^{\mu}
$$

$\rho_{0}=$ rest mass density (baryon number density times average rest mass of the baryons); u = fluid velocity

- stress-energy tensor of an ideal fluid (without non-adiabatic processes, s.a., viscosity, magnetic field, radiation)

$$
T^{\mu \nu}=(\rho+p) u^{\mu} u^{\nu}+p g^{\mu \nu}
$$

$\rho=$ total mass-energy density; $p=$ pressure

General relativistic hydrodynamics

- useful relations: $u^{0}=\frac{W}{\alpha}, \quad \frac{u^{i}}{W}=v^{i}-\frac{\beta^{i}}{\alpha}, \quad \frac{u_{i}}{W}=v_{i}$
- CONSERVATIVE VARIABLES are measured by the Eulerian observers, being defined as:

$$
\begin{aligned}
D & =-J^{\mu} n_{\mu}=-\rho_{0} u^{\mu} n_{\mu}=\rho_{0} W, \text { rest - mass density } \\
S_{j} & =-T^{\mu}{ }_{\nu} n_{\mu}\left(\partial_{j}\right)^{\mu}=\alpha T^{0}{ }_{j}=\alpha(\rho+p) u^{0} u_{j}= \\
& =(\rho+p) W^{2} \frac{u_{j}}{W}=(\rho+p) W^{2} v_{j}, \text { momentum density } \\
E & =T^{\mu \nu} n_{\mu} n_{\nu}=\alpha^{2} T^{00}=\alpha^{2}\left[(\rho+p) u^{0} u^{0}+p g^{00}\right]= \\
& =(\rho+p) W^{2}-\alpha^{2} p \frac{1}{\alpha^{2}}=(\rho+p) W^{2}-p, \text { energy }
\end{aligned}
$$

- derived conservative variable: $\tau=E-D$

General relativistic hydrodynamics

$$
\begin{array}{ll}
T^{00}=\frac{1}{\alpha^{2}} & T^{0 i}=\frac{1}{\alpha}(\rho+P) W^{2}\left(v^{i}-\frac{\beta^{i}}{\alpha}\right)+P \frac{\beta^{i}}{\alpha^{2}} \\
T_{i}^{0}=\frac{1}{\alpha} S_{i} & T^{i}{ }_{j}=S_{j}\left(v^{i}-\frac{\beta^{i}}{\alpha}\right)+P \delta_{j}^{i}
\end{array}
$$

- differential form of baryon number conservation (continuity equation) 1st GRHD equation

$$
\begin{aligned}
J^{\mu}{ }_{; \mu} & =\frac{1}{\sqrt{-g}}\left(\sqrt{-g} J^{\mu}\right)_{, \mu}=\frac{1}{\sqrt{-g}}\left(\sqrt{-g} \rho_{0} u^{\mu}\right)_{, \mu}= \\
& =\frac{1}{\sqrt{-g}}\left(\alpha \sqrt{\gamma} \rho_{0} \frac{W}{\alpha}\right)_{, 0}+\frac{1}{\sqrt{-g}}\left(\sqrt{-g} \rho_{0} W\left(v^{i}-\frac{\beta^{i}}{\alpha}\right)\right)_{, i}= \\
& =\frac{1}{\sqrt{-g}}(\sqrt{\gamma} D)_{, 0}+\frac{1}{\sqrt{-g}} D\left(v^{i}-\frac{\beta^{i}}{\alpha}\right)_{, i}=0
\end{aligned}
$$

General relativistic hydrodynamics

$$
\left(T^{\mu}{ }_{\nu}\left(\mathbf{e}_{\gamma}\right)^{\nu}\right)_{; \mu}=T^{\mu}{ }_{\nu ; \mu}\left(\mathbf{e}_{\gamma}\right)^{\nu}+T^{\mu \nu}\left(\mathbf{e}_{\gamma}\right)_{\nu ; \mu}=T^{\mu \nu}\left(\left(\mathbf{e}_{\gamma}\right)_{\nu, \mu}-\Gamma_{\nu \mu}^{\lambda}\left(\mathbf{e}_{\gamma}\right)_{\lambda}\right)
$$

For $\gamma=0$:

$$
\begin{aligned}
\left(T^{\mu}{ }_{\nu}\left(\mathbf{e}_{0}\right)^{\nu}\right)_{; \mu} & =\left(T^{\mu \nu} n_{\nu}\right)_{; \mu}=\left(-\alpha T^{\mu 0}\right)_{; \mu}=-\frac{1}{\sqrt{-g}}\left\{\left(\sqrt{-g} \alpha T^{00}\right)_{, 0}+\left(\sqrt{-g} \alpha T^{i 0}\right)_{, i}\right\} \\
& =-\frac{1}{\sqrt{-g}}\left\{\left(\sqrt{\gamma} \alpha^{2} T^{00}\right)_{, 0}+\left(\sqrt{-g} \alpha\left[\frac{1}{\alpha}(\rho+P) W^{2}\left(v^{i}-\frac{\beta^{i}}{\alpha}\right)+p \frac{\beta^{i}}{\alpha^{2}}\right]\right)_{, i}\right\} \\
& =-\frac{1}{\sqrt{-g}}\left\{(\sqrt{\gamma} E)_{, 0}+\left(\sqrt{-g}\left[E\left(v^{i}-\frac{\beta^{i}}{\alpha}\right)+p v^{i}\right]_{, i}\right\}\right.
\end{aligned}
$$

$$
T^{\mu \nu}\left(\left(\mathbf{e}_{0}\right)_{\nu, \mu}-\Gamma_{\nu \mu}^{\lambda}\left(\mathbf{e}_{0}\right)_{\lambda}\right)=-T^{\mu 0} \alpha, \mu+\alpha \Gamma_{\nu \mu}^{0} T^{\mu \nu}=\alpha\left(-T^{\mu 0}(\ln \alpha)_{, \mu}+\Gamma_{\nu \mu}^{0} T^{\mu \nu}\right)
$$

$$
\frac{1}{\sqrt{-g}}\left\{\frac{\partial}{\partial t}(\sqrt{\gamma} E)+\frac{\partial}{\partial x^{i}}\left(\sqrt{-g}\left[E\left(v^{i}-\frac{\beta^{i}}{\alpha}\right)+p v^{i}\right]\right)\right\}=\alpha\left(-T^{\mu 0}(\ln \alpha), \mu+\Gamma_{\nu \mu}^{0} T^{\mu \nu}\right)
$$

General relativistic hydrodynamics

For $\gamma=j$:

$$
\begin{aligned}
\left(T^{\mu}{ }_{\nu}\left(\mathbf{e}_{j}\right)^{\nu}\right)_{; \mu} & =\left(T^{\mu}{ }_{j}\right)_{; \mu}=\frac{1}{\sqrt{-g}}\left\{\left(\sqrt{-g} T^{\mu}{ }_{j}\right)_{, \mu}\right\} \\
& =\frac{1}{\sqrt{-g}}\left\{\left(\sqrt{-g} T^{0}{ }_{j}\right)_{, 0}+\left(\sqrt{-g} T^{i}{ }_{j}\right)_{, i}\right\} \\
& =-\frac{1}{\sqrt{-g}}\left\{\left(\sqrt{-\gamma} S_{j}\right)_{, 0}+\left(\sqrt{-g}\left[S_{j}\left(v^{i}-\frac{\beta^{i}}{\alpha}\right)+p \delta_{j}^{i}\right]\right)_{, i}\right\}
\end{aligned}
$$

$$
T^{\mu \nu}\left(\left(\mathbf{e}_{j}\right)_{\nu, \mu}-\Gamma_{\nu \mu}^{\lambda}\left(\mathbf{e}_{j}\right)_{\lambda}\right)=T^{\mu \nu}\left(\left[g_{\nu \lambda}\left(\mathbf{e}_{j}\right)^{\lambda}\right]_{, \mu}-\Gamma_{\nu \mu}^{\lambda} g_{\lambda \sigma}\left(\mathbf{e}_{j}\right)^{\sigma}\right)=T^{\mu \nu}\left(g_{\nu j, \mu}-\Gamma_{\nu \mu}^{\lambda} g_{\lambda j}\right)
$$

$$
\frac{1}{\sqrt{-g}}\left\{\frac{\partial}{\partial t}\left(\sqrt{\gamma} S_{j}\right)+\frac{\partial}{\partial x^{i}}\left(\sqrt{-g}\left[S_{j}\left(v^{i}-\frac{\beta^{i}}{\alpha}\right)+P \delta_{j}^{i}\right]\right)\right\}=T^{\mu \nu}\left(g_{\nu j, \mu}-\Gamma_{\nu \mu}^{\lambda} g_{\lambda j}\right)
$$

3rd, 4th, and 5th GRHD equations

General relativistic hydrodynamics

GRHD equations can be written in a conservation form as

$$
\frac{1}{\sqrt{-g}}\left\{\frac{\partial}{\partial t}(\sqrt{\gamma} \mathbf{U})+\frac{\partial}{\partial x^{i}}\left(\sqrt{-g} \mathbf{F}^{i}\right)\right\}=\boldsymbol{\Sigma}
$$

$\mathrm{U}=\left[\begin{array}{c}D \\ S_{j} \\ \tau\end{array}\right]$

$$
\mathbf{F}^{i}=\left[\begin{array}{c}
D\left(v^{i}-\frac{\beta^{i}}{\alpha}\right) \\
S_{j}\left(v^{i}-\frac{\beta^{i}}{\alpha}\right)+p \delta_{j}^{i} \\
\tau\left(v^{i}-\frac{\beta^{i}}{\alpha}\right)+p v^{i}
\end{array}\right]
$$

$$
\boldsymbol{\Sigma}=\left[\begin{array}{c}
0 \\
T^{\mu \nu}\left(g_{\nu j, \mu}-\Gamma_{\nu \mu}^{\lambda} g_{\lambda j}\right) \\
\alpha\left(T^{\mu 0}(\ln), \mu-\Gamma_{\mu \nu}^{0} T^{\mu \nu}\right)
\end{array}\right]
$$

conservative variables
fluxes
source term

- for curved spacetime, there exist source terms, arising from the spacetime geometry
- for Minkowski metric $\Sigma=0$ and $\sqrt{-g}=\sqrt{\gamma}=1$; strict conservation low is possible only in flat spacetime

General relativistic hydrodynamics

IMPORTANT!! Recovering the primitive variables from the conservative ones, $\mathbf{P}=\left[\rho_{0}, v^{j}, p\right]$

- for conservative formulations, the time update of a given numerical algorithm is applied to the conservative variables
- after this update, the vector of the primitive variables must be re-evaluated as those are needed in the Riemann solver
- the relation between the 2 sets of variables is not in closed form and hence, the recovery of the primitive variables is done by using a root-finding procedure (Newton-Raphson scheme)

General relativistic MHD

One have to include: evolution equations for magnetic field (Maxwell equations - divergence free magnetic field and induction equation) + frozen-in condition

$$
\begin{gathered}
T^{\mu \nu}=T^{\mu \nu} \text { fluid }+T^{\mu \nu}{ }_{\text {elmagm }} \\
\mathbf{U}=\left[\begin{array}{c}
D \\
S_{j} \\
\tau \\
B^{j}
\end{array}\right] \quad \mathbf{F}^{i}=\left[\begin{array}{c}
D\left(v^{i}-\frac{\beta^{i}}{\alpha}\right) \\
S_{j}\left(v^{i}-\frac{\beta^{i}}{\alpha}\right)+p \delta_{j}^{i} \\
\tau\left(v^{i}-\frac{\beta^{i}}{\alpha}\right)+p v^{i} \\
\tilde{v}^{i} B^{j}-v^{j} B^{i}
\end{array}\right] \quad \boldsymbol{\Sigma}=\left[\begin{array}{c}
0 \\
T^{\mu \nu}\left(g_{\nu j, \mu}-\Gamma_{\nu \mu}^{\lambda} g_{\lambda j}\right) \\
\alpha\left(T^{\mu 0}(\ln \alpha), \mu-\Gamma_{\mu \nu}^{0} T^{\mu \nu}\right) \\
0
\end{array}\right]
\end{gathered}
$$

fluxes
conservative variables
source term
Primitive variables: $\mathbf{P}=\left[\rho_{0}, v^{j}, p, B^{j}\right]$

Remarks

- GRMHD simulations of jets formation from Kerr BH Y. Mizuno, K. Nishikawa, and S. Koide
- Koide et al. (1998) - first 3D GRMHD simulations of jets formation

References

1. Font, J. A. - Numerical Hydrodynamics in General Relativity, http://www.livingreviews.org/Irr-2003-4
2. Font, J. A. - General relativistic hydrodynamics and magnetohydrodynamics and their applications, Plasma Phys. Control. Fussion 47, B679-B690, 2005
3. Koide, S. - Magnetic extraction of black hole rotational energy: Method and results of general relativistic magnetohydrodynamic simulations in Kerr space-time, Phys. Rev. D, vol. 67, Issue 10, 2003
4. Mizuno, Y. et al. - RAISHIN: A High-Resolution Three-Dimensional General Relativistic Magnetohydrodynamics Code, astro-ph/0609004
