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|ntroductory remarks

(General) Relativistic (Magneto) hydrodynamics

a (G)R (M)HD code is used to compute the flow of gas
around strong field gravity sources

used to study supernova collapse and formation of BH,
BH-BH binaries, NS-NS binaries, pulsar wind nebulae,
accretion disks, relativistic jets from AGN and
microquasars, etc.
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|ntroductory remarks

Propose of this material

» to introduce or review some aspects of GR

» to introduce the 3+1 decomposition of the spacetime
(in the Eulerian formulation)

» to provide a small derivation of the conservative
systems of the hyperbolic PDE of the GRHD

Notes on the level of this material

» If It IS too easy, just treat it as review, perhaps from a
different perspective

» If it Is too fuzzy, concentrate on the concepts...
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General relativity background

metric element:
ds® = g, (z")dxtdx”
for a flat spacetime of special relativity:
ds® = —dt* + dz° + dy® + dz°

» ds? < 0, interval is timelike; ds? > 0, interval is spacelike; ds®> = 0, it is null
1D curve xz*(\) in spacetime describes a series of events

timelike curve (worldline) is parameterized by the proper
time 7
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General relativity background

4-velocity is defined as: ut = dx;(f)

In SR, the 4-velocity components are

ut = (u’, ut, u?, u?) = (W, W), where W =

1 — o2

Imagine 2 particles with worldlines that meet at point A,
having 4-velocity «,, and v#; their product is an invariant (it
can be evaluated in an arbitrary reference frame)(Fig. 1)

In particular, in the Lorentz reference frame comoving with
u” you have

/ / / /O
u, = (—1,0,0,0), and then uyv" = u v " = —v" = -W
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General relativity background
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3+1 Eulerian formulation

3+1 decomposition

spacetime is foliated into a set of non-intersecting
spacelike hypersurfaces, parameterized by a parameter
usually called time ¢, s.t., the evolution between these
surfaces is described by two kinematic variables

metric can be written in a particular way
ds® = g drtds” = —a’dt® + gi;(dz’ + B'dt)(dx? + B dt)
which in a component form is

BsB° — o? Bj
Bi Vi

goo  9oj

gio  Gij

, where|v;; =gi5 1,7 =1,2,3

v:; = 3-metric induced on each spacelike slice
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3+1 Eulerian formulation

vy = 67; gymnastics of indices 3; = v;; 37

decomposition of the volume associated with the 4-metric
Into the volume associated with the 3-metric

V—g = a7, g = det(guw), v = det(vij;)

let’s consider 2 close spacelike hypersuperfaces 3(¢) and
Y (t + dt) (Fig. 2)

lapse function « describes the rate of advance of time
along a timelike unit vector normal to the hypersurface

spacelike shift vectors 3* describe the motion of
coordinates within a surface
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3+1 Eulerian formulation

4-vector n* is the unit normal vector to the >(¢)

1 —-p
n, — (_aaoaan)a n' = (av » )

Eulerian observers are observers having n as 4-velocity,
at rest in the slice X(¢) and moving L to this slice with
clocks showing proper time

l.e., the basis adapted to the Eulerian observer frames is:

e = 1n,0;}

4-vector u* Is the 4-velocity of some particle
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3+1 Eulerian formulation

=F‘3 9. Geowelrieal fm"-il‘;ne‘f‘a-h‘gu Z!f o) PE.
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3+1 Eulerian formulation

Let’s translate the 4-velocity of a particle from the arbitrary
coordinate frame (.S) to the Eulerian frame (5')

S S’
: (t,z?) (t',2'?)
Q | (t+dt i — Bidt) (' + adt, z'?)
R | (t+dt,z' +dzt) | (t' + adt,z’ + Bidt + dx?)

A-velocity = vector PR / proper time 7

in the coordinate frame $: u# = {4L420) — (j—t, cilwz)
T T T
in the Eulerian frame S’:

ui 7
L
au (@7

o, (adt, B'dt + dx*)
Uu —
dt

= (au’, u'+ B'u’) = an’(1
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3+1 Eulerian formulation

Lorentz factor as seen from S’ is: W = —n u* = au’

3-velocity of particle in Eulerian frame: o* = w' | G

auf o

: ud B3I 1 : :
V: = ~isvd = s 1L - (ud 4+ BIu0) =
s = e i <ozu0 Q ) au0 Vi )
B G 0) = — (g.ou® + giud) =
. oy Yij U U ) = 00 gi;ou giju ) = out0

Normalization: —1 = guvubu’ = —a?(u®)? + v, (u* + Bu®) (uw? + B7ud)=
— _a?(u0)? {1 _ (u_'LO b g) ( u’ A ﬁJ)} = —a?(u®)2(1 — i 007
au

Q auf Qo

Lorentz factor: | W = au® = (1 — ;00?12
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General relativistic hydrodynamics

GRHD equations consist of the local conservation laws of
the matter current density and the energy-momentum
(stress-energy tensor) + fluid equation of state

rest mass flux (proportional to the baryon number flux) is:

JH = pout

po = rest mass density (baryon number density times average rest mass of the
baryons); u = fluid velocity

stress-energy tensor of an ideal fluid (without non-adiabatic
processes, s.a., viscosity, magnetic field, radiation)

TH = (p + p)u'u” + pg"”

p = total mass-energy density; p = pressure
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General relativistic hydrodynamics

useful relations: w0 =W u i 00w,
a ) a? W

CONSERVATIVE VARIABLES are measured by the
Eulerian observers, being defined as:

D = —J#n, = —pou'n, = poW, rest — mass density
Sj = =T"ynu(0))" = oT7; = a(p + p)u’u; =

= (p+ p)WQ% = (p+ p)WQUj, momentum density

E =T"nm, = o*T" = o’[(p + p)uu’ + pg"™] =
1

=(p+p)W?*— 04229@ = (p+p)W? — p, energy

» derived conservative variable: - =F — D
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General relativistic hydrodynamics

TOO:— TO’L:_ PW2 T M P
3 ~(p+ P)W™(v' — —) + P
1 . . g .
1 N
o J ](?J Oé)—l_ 7

differential form of baryon number conservation (continuity
equation) 1st GRHD equation

T = = (VG = = (Vo) =
_ & RN (=i — Z)) =
‘ﬁ(ﬁp0a>,0+¢——g<ﬂpow( a)),i
_ 1 L (i BN _
‘H(WD)’O+¢?9D( a> ’
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General relativistic hydrodynamics

(THv(ey)” )ip =T v;u(ey)” + TH (ey)uy = TH ((ev)v,u . Fzéu(ewbx)

For v = 0:

(T%1(0) i = (Tm) e = (0T} = ——= {(V=50T™) 0 + (V=50T") .}
- F{(IaQTOO)o+ (Fa[ (p+ PYW? (o' ——)+pﬁ]) }
1

«

—__ -8 {(ﬁE),o + (\/—_9 {E(Ui h 6:) —|—pvi:|>’i}

THY ((eo),,,u . I‘f)u(eo)x) — T, +al'9, T* = o (~T*(Inq),, + 0, TH)

\/% {%(ﬁE) + % <\/—_g [E(v’i — %i) +pviD} = o (-T"°(Ina),, + Iy, TH)

2nd GRHD equation
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General relativistic hydrodynamics

For v = j:

(TH(e5)" )

T ((e5)v — T3 (e5)2)

= (@) = o= {(v=o1"3) .}

——{\/_TO

\/T_g

{(\/—_’Ysj),o + (\/—_9 {Sj (v* —

0‘|‘(\/_T.7)}

%i) +p5;]>,i}

1

V=g

{

0
ot

0

= WS5) + o

ox

(\/—_g [Sj (v* —

B 5 v
) )} = i)

3rd, 4th, and 5th GRHD equations



General relativistic hydrodynamics

GRHD equations can be written in a conservation form as

S AV + o (Vg | =

[ 1] D — 2y ] [ 0
. . 7 . .
U = Sj F' = Sj (’UZ o %) —|—p5; e e (gvj,pb _ Féug)\j)
| 7| _7'(’0Z — %) + pv* o (T“O(ln ),y — I‘/OWT“V)_
conservative variables fluxes source term

for curved spacetime, there exist source terms, arising from the spacetime
geometry

for Minkowski metric ¥ = 0 and /—g = /¥ = 1; strict conservation low is
possible only in flat spacetime
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General relativistic hydrodynamics

IMPORTANT!! Recovering the primitive variables from the
conservative ones, P = |pg, v7, p]

for conservative formulations, the time update of a given numerical algorithm is
applied to the conservative variables

after this update, the vector of the primitive variables must be re-evaluated as
those are needed in the Riemann solver

the relation between the 2 sets of variables is not in closed form and hence, the
recovery of the primitive variables is done by using a root-finding procedure
(Newton-Raphson scheme)
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General relativisstic MHD

One have to include: evolution equations for magnetic field
(Maxwell equations — divergence free magnetic field and
Induction equation) + frozen-in condition

= T'uyfluid + Tﬂyelmagm

p — o 'i/ — o —

D D(vt — £ 0
. (8
u— |5 N reRgd I e O T2.955)
T T(v* — %) + pv’ a(T*(lna),, — F/OWT“V)
BJ vt BJ — vi B* 0
conservative variables fluxes source term

Primitive variables: P = [ﬂo,vj,pa Bj]
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Remarks

GRMHD simulations of jets formation from Kerr BH
Y. Mizuno, K. Nishikawa, and S. Koide

Koide et al. (1998) — first 3D GRMHD simulations of jets
formation
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