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Abstract. We study the interaction of relativistic jets with their environment, using 3-dimen-
sional relativistic particle-in-cell simulations for two cases of jet composition: (i) electron-proton
(e− − p+ ) and (ii) electron-positron (e±) plasmas containing helical magnetic fields. We have
performed simulations of “global” jets containing helical magnetic fields in order to examine
how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic
Kelvin-Helmholtz instability and the Mushroom instability. We have found that these kinetic
instabilities are suppressed and new types of instabilities can grow. For the e− − p+ jet, a
recollimation-like instability occurs and jet electrons are strongly perturbed, whereas for the e±

jet, a recollimation-like instability occurs at early times followed by kinetic instability and the
general structure is similar to a simulation without a helical magnetic field. We plan to perform
further simulations using much larger systems to confirm these new findings.
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200 I. Duţan et al.

1. Introduction
Particle-in-cell (PIC) simulations of collisionless shock formation and instability growth,

such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI), and the
Mushroom instability (MI), have been performed to study magnetic field generation,
particle acceleration, and emission of radiation with applications to astrophysical plasma
jets (e.g., Alves et al. 2012, Nishikawa et al. 2003, 2005, 2013, 2014, 2016a,b). Further-
more, Nishikawa et al. (2016a) have performed global simulations involving injection of
a cylindrical jet into an ambient plasma in order to investigate shock (Weibel instabil-
ity) and velocity shear instabilities (kKHI and MI) simultaneously. Previously, these two
processes have been investigated separately.

To our knowledge, Nishikawa et al. (2016b) were the first to present results of numerical
PIC simulations of global relativistic jets containing helical magnetic fields. The kinetic
features of secondary magnetic reconnection in a single flux rope undergoing internal kink
instability are studied by means of three-dimensional particle-in-cell simulations where
the single flux rope is modeled with a simple screw-pinch configuration as in Markidis
et al. (2014).

The presence of helical magnetic fields is suggested by twisted structures that have
been observed in many active galactic nuclei (AGN) jets, from sub- to kiloparsec scales
(e.g., Lobanov & Zensus (2001), Perucho et al. (2012), Gómez et al. (2016)). These jet
structures were explained through relativistic magnetohydrodynamic (MHD) modeling,
where simulations of current-driven (kink) instabilities were performed (e.g., Mizuno
et al. (2015), Singh et al. (2016)). The main result obtained by Nishikawa et al. (2016b)
has revealed that new types of shocks, similar to the recollimation shocks attained in
relativistic MHD simulations, occur when a relativistic plasma jet contains a helical
magnetic field. The simulations presented in this paper were designed to further test
these new findings.

2. Numerical methods and simulation setup
We use a fully kinetic approach to model the formation of shocks in relativistic plasma

jets containing helical magnetic fields. We apply PIC methods to numerically simulate
the injection of a cylindrical relativistic jet with a Lorentz factor γ = 15 into an ambient
plasma at rest, using a modified version (e.g., Nishikawa et al. (2003), Nishikawa et al.
(2014), Nishikawa et al. (2016a)) of the TRISTAN code (Buneman (1993)).

For plasma composition, we use (i) an electron-proton (e−−p+) plasma with a realistic
proton-electron mass ratio (mp/me = 1836) and (ii) an electron-positron (e±) plasma.
The simulations were performed with a numerical grid of (Lx , Ly , Lz) = (645Δ, 131Δ,
131Δ), where Δ = 1 is the cell size, and periodic boundary conditions in traverse direc-
tions. The plasma jet, with a radius of rjt = 20Δ, is injected in the middle of the y − z
plane ((yjc , zjc) = (63Δ, 63Δ)) at x = 100Δ. For the complete set of parameters, see
Nishikawa et al. (2016b).

The helical magnetic field structure is implemented using the equations in Mizuno
et al. (2015), with an exponential damping function for the magnetic fields external to
the jet in order for plasma instabilities to grow (Nishikawa et al. (2016b)). However, our
simulations use Cartesian coordinates. We set α = 1, thus eqs. (9), (10) and (11) from
Mizuno et al. (2015) are reduced to eq. (2.1) and the magnetic field takes the form:

Bx =
B0

[1 + (r/a)2 ]
, Bφ =

(r/a)B0

[1 + (r/a)2 ]
(2.1)
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Figure 1. Panels show
2D plots of the isocon-
tour of Jx in the y − z
plane: (a) and (c) for
e− − p+ and (b) and
(d) for e± plasma jets,
at time t = 500ω−1

p e .
Arrows show the mag-
netic fields (By ,z ). Pan-
els (a) and (b) show Jx at
x = 180Δ, whereas pan-
els (c) and (d) show Jx

at x = 480Δ. For both
cases, the original left-
-handed polarity of By ,z

found at x = 180Δ has
switched to right-handed
polarity at x = 480Δ.

The toroidal magnetic field is created by a current +Jx(y, z) in the positive x-direction,
so that defined in Cartesian coordinates:

By (y, z) =
((z − zjc)/a)B0

[1 + (r/a)2 ]
, Bz (y, z) = − ((y − yjc)/a)B0

[1 + (r/a)2 ]
. (2.2)

Here a is the characteristic length-scale of the helical magnetic field, (yjc , zjc) is the jet
center, and r =

√
(y − yjc)2 + (z − zjc)2 . The choice of helicity is defined by eq. (2.2),

and has left-hand polarity with positive B0 .
In the simulations, the initial magnetic field amplitude parameter B0 = 0.1c, (c = 1),

(σ = B2/nemeγjetc
2 = 2.8 × 10−3), and a = 5.0Δ = 0.25 ∗ rjt , with rjt = 20Δ.

3. Simulation results
Results of global jet PIC simulations containing helical magnetic fields were presented

in Nishikawa et al. (2016b). In the e− − p+ jet case recollimation-like shocks are devel-
oped. In the e± jet case small recollimation structures are initially formed, and after
instabilities have grown, currents extend outside the jet and the current density becomes
turbulent. Nishikawa et al. (2016b) also compared their results to two different relativis-
tic MHD simulations of (a) recollimation (Mizuno et al. (2015)) and (b) current-driven
kink instability (Singh et al. (2016)).

In Figure 1 we show 2D isocontour plots of the x-component of the current density
Jx in the y − z plane for the electron-proton (e− − p+) case and the electron-positron
(e±) case at time t = 500ω−1

pe . We have found in both cases that, due to the growth of
jet instabilities, the original left-handed (clockwise viewed from the jet front) polarity of
the magnetic field (By,z ) is switched to right-handed polarity, as shown in Fig. 1.

At x = 180Δ instabilities start to grow and, for the e− − p+ jet at x = 480Δ, the
magnetic field structure is distorted and By,z shows linear polarity inside the jet, as
the magnitude of Jx decreases towards a null value. This is what we might expect from
recollimation-like shocks.
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4. Conclusions
Using a fully kinetic approach, the simulation results presented in Nishikawa et al.

(2016b) demonstrate the formation, at the microphysics level, of new types of shock
structures in relativistic plasma jets due to the presence of helical magnetic fields, whereas
kinetic instabilities, such as the Weibel instability, kKHI, and MI are suppressed. These
new types of shocks have structures similar to those obtained using relativistic MHD
methods (Mizuno et al. (2015), Singh et al. (2016)). Here, we have also shown that due
to the presence of instabilities, the polarity of the magnetic field By,z switches sign and,
in the case of the e− − p+ jet, By,z shows linear polarity inside the jet.

Further systematic study of relativistic jets containing helical magnetic fields along
with associated processes such as reconnection, turbulence, and generation of ultra-high
energy particles will provide more advanced interpretation of observed phenomena such
as gamma-ray burst (GRB) emission and polarized emission in Blazars and GRB jets.
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