Study of the
Minimum Solar Corona on
the Period August-October 1996

M. Mierla, R. Schwenn, L. Teriaca,
G. Stenborg, B. Podlipnik
Contents

1. Introduction
2. Data Used
3. Data Reduction
4. Solar Corona at Minimum of Activity
5. Conclusions
Introduction

Aim: Study the dynamics of the solar corona at minimum of activity using LASCO-C1 spectral data.
Data Used

<table>
<thead>
<tr>
<th>Date</th>
<th>Xsize (pixels)</th>
<th>Ysize (pixels)</th>
<th>bin</th>
<th>Exp. time (s)</th>
<th>(\lambda_{\text{on min}}) (Å)</th>
<th>(\lambda_{\text{on max}}) (Å)</th>
<th>(\lambda_{\text{off}}) (Å)</th>
<th>(\lambda - \text{step}) (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug - Oct 1996</td>
<td>832</td>
<td>672</td>
<td>1</td>
<td>25</td>
<td>5300.90</td>
<td>5303.95</td>
<td>5309.24</td>
<td>0.3</td>
</tr>
<tr>
<td>Aug - Oct 1996</td>
<td>832</td>
<td>672</td>
<td>1</td>
<td>16</td>
<td>6374.11</td>
<td>6377.94</td>
<td>6380.95</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Each on-line image: emission corona + continuum corona + stray light

Magurele 2007
Data Reduction

- normalize by exposure time
- bias correction
- cosmic rays removal

Correction of FP transmittance

Fe XIV: Calibration of wavelengths using the main absorption line

\[\frac{n \cdot d \cdot \cos \theta}{\cos \lambda} = \frac{m \cdot \lambda}{2} \]

Fe X: Exposure time correction

\[n \cdot d \cdot \cos \theta = m \cdot \lambda / 2 \]
Determination of LOS Velocities

from the position of the emission line peak with respect to the reference line peak (average over the whole corona)

=> LOS velocities

(0.1 Å ~ 5.6 km/s)
(0.1 Å ~ 4.7 km/s)
Determination of Effective Temperatures

from the line width value, after correcting for the instrumental profile

\Rightarrow effective temperatures

$(0.7 \, \text{Å} \sim 2\text{MK})$

$(0.6 \, \text{Å} \sim 1\text{MK})$
Slow Solar Wind

$d = 1.3 \, R_{\odot}$

$V_{\text{los}} = 5 \, \text{km/s}$

$V = 15 \, \text{km/s}$

Magurele 2007
Streamers:

\(T_e \sim 1.35 \text{ MK at } 1.03 \, R_\odot \) (Feldman et al. 1998 - SUMER)

\(T_e \sim 1.8 \text{ MK at } 1.15 \, R_\odot \) (Li et al. 1998 - Yohkoh SXT)

\(T_e \sim 1.4 \text{ MK at } 1.4 \, R_\odot \) (Gibson et al. 1999, Parenti et al. 2000 - CDS)

\(T_e \sim 1.6 \text{ MK at } 1.5 \, R_\odot \) (Raymond et al. 1997 - UVCS)

\(T_e \sim 1.6 - 2.0 \text{ MK at } 1.1 - 2.0 \, R_\odot \) (Ichimoto et al. 1996 - model)
Effective Temperatures
Effective Temperatures
Conclusions (1)

Slow Solar Wind:
- is associated with streamers
- radial speeds of around 10 – 15 km/s at ~ 1.3 R☉ were deduced

![Graph showing outflow speed vs. distance (R☉)]

- LASCO-C1 observations
- Abbo and Antonucci 2002
- Antonucci et al. 2005
- Strachan et al. 2002
- Poletto et al. 2002
- Frazin et al. 2003
- Sheeley et al. 1997
Conclusions (2)

Fe X emission is associated with cooler closed loops

Fe XIV emission is associated with the hotter plasma at the base of the streamers