Study of the Minimum Solar Corona on the Period August-October 1996

M. Mierla, R. Schwenn, L. Teriaca, G. Stenborg, B. Podlipnik

Contents

- 1. Introduction
- 2. Data Used
- 3. Data Reduction
- 4. Solar Corona at Minimum of Activity
- 5. Conclusions

Introduction

Aim: Study the dynamics of the solar corona at minimum of activity using LASCO-C1 spectral data.

Data Used

Date	Xsize (pixels)	Ysize (pixels)	bin	Exp. time (s)	λ _{on min} (Å)	λ _{on max} (Å)	λ _{off} (Å)	λ- step (Å)
Aug - Oct 1996	832	672	1	25	5300.90	5303.95	5309.24	0.3
Aug - Oct 1996	832	672	1	16	6374.11	6377.94	6380.95	0.5

Each on-line image: emission corona + continuum corona + stray light Magurele 2007

Data Reduction

- normalize by exposure time
- bias correction
- cosmic rays removal

Correction of FP transmittance

Fe XIV: Calibration of wavelengths using the main absorption line

Fe X: Exposure time-correction $n \cdot d \cdot \cos \theta = m \cdot \lambda / 2$

Determination of LOS Velocities

from the position of the emission line peak with respect to the reference line peak (average over the whole corona)

```
=> LOS velocities
```

$$(0.1 \text{ Å} \sim 5.6 \text{ km/s})$$

 $(0.1 \text{ Å} \sim 4.7 \text{ km/s})$

4

6

Determination of Effective Temperatures

from the line width value, after correcting for the instrumental profile

=> effective temperatures

 $(0.7 \text{ Å} \sim 2MK)$ $(0.6 \text{ Å} \sim 1MK)$

Slow Solar Wind

wagurele 2007

Streamers

Streamers: $T_e \sim 1.35$ MK at 1.03 R $_\odot$ (Feldman et al. 1998 - SUMER) $T_e \sim 1.8$ MK at 1.15 R $_\odot$ (Li et al. 1998 - Yohkoh SXT) $T_e \sim 1.4$ MK at 1.4 R $_\odot$ (Gibson et al. 1999, Parenti et al. 2000 - CDS) $T_e \sim 1.6$ MK at 1.5 R $_\odot$ (Raymond et al. 1997 - UVCS) $T_e \sim 1.6$ - 2.0 MK at 1.1 - 2.0 R $_\odot$ (Ichimoto et al. 1996 - model)

Effective Temperatures

Effective Temperatures

Conclusions (2)

Fe X emission is associated with cooler closed loops

Fe XIV emission is associated with the hotter plasma at the base of the streamers