Theoretical Fits for Barium Stars

Laura Husti, University of Torino

About stellar evolution

Core H burning
Core H exhaustion and contraction
H-shell ignition \rightarrow core contraction + envelope expansion
First dredge-up
Core He burning
Core He exhaustion; contraction of the C-O core
Convection takes place of the radiative state in all the He-rich region
The envelope is expanded and the H -shell is cooled and extinguished
After the thermal pulse, the envelope penetrates below the $\mathrm{H}-\mathrm{He}$ discontinuity (TDU)
H is reignited and the cycle continues
Envelope is eroded during the pulsating phase
The star becomes a white dwarf surrounded by a planetary nebula

Neutron sources:

radiative ${ }^{13} \mathrm{C}(\alpha, n)^{16} \mathrm{O}$
convective ${ }^{22} \mathrm{Ne}(\alpha, n)^{25} \mathrm{Mg}$
${ }^{22} \mathrm{Ne}$ formation: ${ }^{14} \mathrm{~N}(\alpha, \gamma){ }^{18} \mathrm{~F}(\beta+, v)^{18} \mathrm{O}(\alpha, \gamma){ }^{22} \mathrm{Ne}$
${ }^{13} \mathrm{C}$ formation: ${ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{\gamma}){ }^{13} \mathrm{~N}(\beta+, v){ }^{13} \mathrm{C}(\mathrm{p}, \gamma){ }^{14} \mathrm{~N}$
ST ${ }^{13} \mathrm{C}$ pocket:
$5 \times 10^{-4} \mathrm{M}$ _sol $\sim 1 / 10$ of the typical mass involved in a TP
$2.8 \times 10^{-6}-\mathrm{M}_{\text {_ }}$ sol of ${ }^{13} \mathrm{C} \quad 9 \times 10^{-8} \mathrm{M}$ _sol of ${ }^{14} \mathrm{~N}$

Barium stars

identified by Bidelman\&Keenan (1951)
chemically peculiar G and K giants - enhanced lines:
Ball 4554 A resonance line
CH G band
Srll 4077A and 4215A lines
Tomkin et al. (1989) - dwarf HR 107 - barium star chemical composition $[\mathrm{Fe} / \mathrm{H}] \leq 0$
variations in radial velocity - white dwarf companions
s-process elements transferred from the companion during its TP-AGB phase
sample of 26 stars: Allen \& Barbuy (2006)

References

- Allen, D. M. \& Barbuy, B., 2006, A\&A, 454, 895
- Allen, D. M. \& Barbuy, B., 2006, A\&A, 454, 917
- Bidelman, W. P. \&Keenan, P. C., 1951, ApJ, 114, 473
- Busso, M., Gallino, R. \& Wasserburg, G. J., ARA\&A, 1999, 37, 239
- Gallino, R. et al., 1998, ApJ, 497, 388
- Malaney, R. A., 1987, ApJ, 321, 832
- Malaney, R. A., 1987, ApJS, 137, 251
- Tomkin, J. et al., 1989, A\&A, 219, L15

Theoretical fits

T_eff $=6350 \mathrm{~K}$
$\log g=4.2$
$[\mathrm{Fe} / \mathrm{H}]=-0.48$
$\mathrm{M}=1.1 \mathrm{M}$ _sol obs: good fit

T_eff $=5890 \mathrm{~K}$
$\log g=4.2$
$[\mathrm{Fe} / \mathrm{H}]=-0.29$
$\mathrm{M}=1.0 \mathrm{M}$ _sol
obs:
-lower Sr observed than predicted -higher Pb observed than predicted

HD92545

$$
\text { T_eff }=6210 \mathrm{~K}
$$

$\log g=4.0$
$[\mathrm{Fe} / \mathrm{H}]=-0.12$
$\mathrm{M}=1.3 \mathrm{M}$ _sol
obs: higher Pb and Ba
observed than predicted

