

Introduction

In physical cosmology, dark energy is a hypothetical form of energy which permeates all off space and has strong negative pressure. According to the theory of relativity, the effect of such a negative pressure is qualitatively similar to a force acting in opposition to gravity at large scales.
One possibility is that the Universe contains a cosmological constant, similar to the one erringly introduced by Einstein, but originating from vacuum energy. An alternative which we are actively studying is quintessence, a dynamical form of dark energy.

In order for quintessence dark energy to cause the cosmic expansion to accelerate, the pressure must be more negative than minus one-third its energy density. One consequence is that inhomogeneities in the quintessence have novel gravitational properties.

Objectives:

We use two types of frames: Jordan frame and Einstein frame and we want to see how omega (the cosmological constant) varies in those two frames for three species: radiation, cold dark matter, with her densities and the rotational scalar field (quintessence). For this we use the conformal transformation and two equation: Fridmann equation and equation of motion. The two equations are listed below:

$$
\begin{gathered}
\ddot{\phi}+3 \tilde{H} \dot{\phi}+V(\phi)=\sqrt{2 / 3} k \beta\left(\tilde{\rho}_{m}+3 \tilde{p}_{m}\right) \\
H^{2}=\frac{8 \pi G}{3}\left(\frac{1}{2} \dot{\phi}^{2}+2 V+\rho_{m}+\rho_{\gamma}\right)
\end{gathered}
$$

! No evidence of quintessence is yet available, but it cannot be ruled out either

The Mathematics
Consider $\quad F(R)=R+\frac{R^{2}}{M^{\text {and }}} \quad V=\frac{R F^{\prime}(R)-F(R)}{2 k^{2}\left[F^{\prime}(R)\right]}$ then the potential is:

Using:

$$
\begin{aligned}
V(\phi) & =\frac{M^{2} e^{-2 \sqrt{2 / 3} k \varphi}\left(e^{-\sqrt{2 / 3} k \varphi}-1\right)^{2}}{8 k^{2}} \\
3 \frac{d^{2} V}{d \varphi^{2}} & =\frac{1}{3 F^{\prime \prime}(\phi)}+\frac{\phi}{F^{\prime}(\phi)}-\frac{4 F^{\prime}(\phi)}{F^{\prime}(\phi)^{2}} \\
3 \frac{d^{2} V}{d \varphi^{2}} & =\frac{M^{2}}{2}+\phi-4 R
\end{aligned}
$$

we obtain:
The second derivatite is evaluate around the Minkovski vacuum $(\varphi=0)$ and gives the effective mass squared of the scalar field M^{2} which is much larger than $\mathrm{H}_{0}{ }^{2}$.

The plots

We use Maple 9.5 to create the plots. For simplicitz we neglect the matter term from equations. First we reprezent omega as function of a in Einstein frame.

Then we represent omega as function of :
in Jordan frame.

