

Katrin Persson, Cristina Rusu, Britta Ottosson

Imego AB, Arvid Hedvalls Backe 4, SE-411 33 Göteborg, Sweden

Introduction

A novel packaging platform for the integration of sensors, actuators, fluidic and optical elements together with electronics into a single package is being developed.

Silicon direct wafer bonding to low CTE LTCC has been investigated.

Conclusions

 Silicon and LTCC show similar behaviour when used for packaging (low pressure inside the package) while glass tends to be poorer.

• The new low CTE LTCC technology opens up the possibility of direct bonding between MEMS wafers and LTCC substrates.

• The prospect of using LTCC as substrate allows for cheaper chip/wafer scale packages, which in turn can become an essential factor in bringing MEMS products to a mass-market.

Simulation

Static deformation
results from ANSYS us ing SOLID92 hexahedral
elements.

Anodic bonding at

Figure 2. Equivalent von-Mises stress in the middle silicon wafer at room temperature after anodic bonding with LTCC on both sides at 420°C.

Figure 3. Equivalent von-Mises stress in the middle silicon wafer at room temperature after anodic bonding with glass on both sides at 420°C.

420°C.

Figure 1. Thermal expansion coefficients of silicon, LTCC and borofloat 33 glass.

The thickness of the wafers is 300 µm and
500 µm for silicon and
LTCC/glass respectively.

• The stress was evaluated at room temperature.

• Vacuum sealing has been simulated in the case of cavities in the middle silicon wafer.

Figure 4. Deformation after anodic bondning at 420°C (upper curve) and deformation due to vacuum sealing (10-3 mbar) (lower curve) of 500 µm LTCC to silicon. Cavity size 8 x 8 mm².

Figure 5. Graph of the magnitude of the radius of curvature at low pressure encapsulation and anodic bonding versus silicon cavity size for 500 µm LTCC. Bonding area is 1 mm at each side.

Experimental

- The new low CTE LTCC material gives the opportunity of direct wafer bonding to silicon.
- The material contains alkali ions which allows for direct anodic bonding to silicon.

• 2" low CTE LTCC wafer was bonded to silicon by standard anodic bonding at 420 °C, 800 V and a few seconds.

Figure 6. LTCC anodically bonded to a silicon wafer.

Figure 7. SAM, scanning acoustic microscopy, image of the interface between LTCC and silicon. Voids are indicated by red regions.

Acknowledgements

The authors would like to acknowledge Via Electronics and HITK for supplying the LTCC samples for anodic bonding evaluation.

Contact Katrin Persson

Imego AB, Arvid Hedvalls Backe 4 SE-411 33 Göteborg, Sweden E-mail: katrin.persson@imego.com www.imego.com