COMBINED ANAL YSIS OF COSMIC MICROWAVE BACKGROUND (CMB) AND LARGE SCALE STRUCTURE (LSS) MEASUREMENTS Ana Vasile,

Institute for Space Sciences Magurele, Romania

What do cosmologists want?

Extraction of the maximum amount of information from the cosmological data

Estimate and improve the error bars on cosmological parameters

Answering some fundamental qualitative questions about the primordial Universe

What do cosmologists get?

CMB POWER SPECTRUM

- The CMB power spectrum contains a wealith of cosmological information

Neverthelesjs fiot enough to get the consugete
cosirnological
gicture

DEGENERACY - MAJQrI PFOBEEMy

Left: the reionization of the universe parameterized by both the optical depth (or fraction of the CMB rescattered during reionziatoion) and the redshift of reionzation. Right: the gravitational waves parameterized by their contribution relative to density fluctuations at the quadrupole (1)2).

SOLUTION

Combining CMB and LSs data can obtain complementary constraints and eliminate the degeneracies
Degenerate directions of one data set can be well constraint directions of another
Can make a consitency check bêtween different sets of data and a certain cosmological model

TOOLS:

 COSMOLOGICAL MONTE CARLOA "random-walk" in the parameter space, where the probability to be anywhere in the space is proportional with the aposteriori probability

Advantage: It scales approximately linearly with the number of parameters so that many parameters can be included for only small additional computation costs

MCMC IN PRACTICE

1. Start with a set of cosmological parameters $\left\{\alpha_{1}\right\}$, compute C_{1}, and the Tikelihood L_{1}
2. Take a random step in the parameter space \rightarrow new set of cosmological parameters $\left\{\mathrm{a}_{2}\right\}$.
The probability distribution of the step \rightarrow Gaussian in each direction i with r.m.s $\sigma_{i}=$ "step size"

MCMC IN PRACTICEII

3. Compute again C^{2}, and L_{2}

4a. If $L_{2} / L_{1} \geq 1$ take the step. New set $\left\{\alpha_{2}\right\}$
$4 b$. Else draw a random number x from a uniform distribution from 0 to 1. If $x \geq L_{2} L_{1}$ do not take the step but return to step 2. Else, take the step and return to 4 a
5. Run separate chains randomly chosen and stop when a certain convergence criterion is reached

Advantages of the combined

analysis

2D marginalized contours (68% and 95% confidence levels) for some combinations of parameters for WMAP only

Same as left panel for WMAP+2dFGRD+SDSS+CBI

NEW DATA \equiv IMPROVED TOOLS

CMB Polarisation

0 Amplitude $/(\Delta T / T)_{\text {max }}$ (ive) :

Simulated maps of the CMB sky in inflationary CDM models

The realisation of the CMB power spectrum of the ACDM model (red line) after 4 years of WMAP observations versus the same with the sensitivity and angular resolution of Planck

Forecasts for the $\mathbf{\pm 1 \sigma}$ errors on the temperaturepolarization cross correlation power spectrum in a ACDM model

From Planck Bluebook

