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Abstract 

In this paper, a Lyapunov–Krasovskii functional is used to obtain sufficient conditions of asymptotic 
stability for the equilibrium of a nonlinear feedback system with state-dependent uncontrolled switching, 
herein called structural switching, and with actuator delay. The solution of the problem is addressed 
in two steps. First, a predictive feedback method is used to compensate the actuator delay of the 
associated linearized system. Thus, the time-delayed control is replaced with a state delay, and the 
effect of the control appears in a non-homogeneous term in the linearized system. Second, a theorem 

of asymptotic stability of equilibrium is obtained for the nonlinear switched system, whose linearized 
components were considered separately in the first step. The result is also valid for certain problems 
of state-dependent controlled switching. The numerical application, done on a consecrated real world 
system, the electrohydraulic servomechanism, highlights real difficulties, which are usually avoided by 
academic constructs in which the results are sometimes illustrated on insignificant models, represented, 
for example, by 2 × 2 didactic matrices. 
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. Introduction 

The two main concepts of this paper are the time delayed systems and the switched systems.
herefore, a short introduction regarding the two types of systems is useful. 

The systems with delay are also called hereditary systems, systems with after effects or
ead time, and systems with time lags as well [1] . The classical authors of the field speak
bout the class of retarded differential-difference equations [2] , differential equations with
eviating argument [3] , or retarded functional differential equations [4] . In the book [5] ,
n association is made between the linear partial differential equations, so-called distributed
arameter systems and the linear differential equations with delay, so-called lumped parameter
ystems. Both types belong to the class of infinite dimensional systems, a property given by the
nfinite number of solutions that the characteristic polynomials of delay equations may have;
he characteristic polynomials are now exponential polynomials or quasipolynomials. In an
nfluential work [6] , Pontryagin gives a fundamental theorem on the zeros of quasipolynomials,
hich opens a way to analyse the stabilization of linear time invariant systems with time delay

7] . Important books have appeared since the 1950s, such as [8] , and continuing with [2–4 ,
–14] . At first, the attention was drawn to the open loop systems with state delay. Later, the
rogress made in this field facilitates the development of the theory of systems with time
elay on input (control) or output (measurement) [15–19] . 

An elegant definition of the switched systems is that from the paper [20] : “by a switched
ystem, we mean a hybrid dynamical system consisting of a family of continuous-time sub-
ystems and a rule that orchestrates the switching between them”. In book [21] , the switched
ystems are presented from a theoretical perspective of the switching law synthesis to obtain
table switching systems. The used mathematical concepts and tools are single and multiple
yapunov function, Lie-algebraic stability criteria, limited-rate switching no smaller than so-
alled dwell-time (i.e., the time between switchings [22] ). A persistent dwell-time switching
cheme is utilized in [23] to describe the successive occurrence of slow and fast switching in
 switched singular system with sensors failures. The same persistent dwell-time switching
trategy is employed to represent the switching among neural networks used for H ∞ 

filtering
24] or for state estimation in a problem of mixed H ∞ 

/ l 2 − l ∞ 

[25] . These are examples from
hich one can see how the boundaries of the concept of switched system can be extended to

ormulate and solve new problems. We mention that dwell time switching schemes are also
tudied for systems with variable time delay, on state or on control, since these schemes can
ptimize the dynamic behavior of the system by controlling the time delay. 

It is important to note that the system considered in the application from Section 4 , the
athematical model of the electrohydraulic servomechanism (EHS), does not belong to the

bove categories. EHS is the representative example for a system with state-dependent uncon-
rolled switching. This fact results from the constructive-functional scheme of EHS ( Fig. 1 ),
hose mathematical model ( 11 ) and ( 12 ) is broken down into two components that describe

he servovalve ports opening on one side and the other of hydraulic null during dynamical
unctioning. Applying analysis tools such as Lyapunov–Malkin theory, geometric control and
ommon Quadratic Lyapunov Function [26 , 27] , in the works [28–32] the equilibrium stability
f this switching type system has been studied. 

In this article we consider systems that are both switched and delayed. In some recent
orks, [33 , 34 ], stability criteria based on multiple Lyapunov–Krasovskii functionals are pro-
osed for studying linear and nonlinear open-loop, in other words without control, state-
elayed switched systems. The stabilization problem of switched control systems with delay
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Fig. 1. Block diagram of the servovalve controlled EHS. HC: hydraulic cylinder with piston; L: load; C: controller; 
T: transducer; TM: torque motor; EHSV: electrohydraulic servovalve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in switching law is studied in [35] by using the method of Lyapunov functions and delay
inequalities. In [36] , exponential stability analysis and stabilization for linear switched sys- 
tems with time-varying delay are approached by using the method of interconnecting systems 
and applying the small gain theorem. Mathematical tool of Lyapunov–Krasovskii functionals 
was also used in work [37] to obtain appropriate conditions involving an average dwell time
for the input-to-state stability of switched nonlinear systems with delayed input and in the
presence of disturbances. In [38] , a global exponential stabilization criterion is established by
introducing restrictions on the linear part of the system in terms of Metzler matrices. In all
the just quoted papers, the switching refers again to the derivation of a switching law that
stabilizes the system. 

The purpose of this paper is to propose a solution to the problem of the equilibrium stability
for a complex nonlinear feedback system with control delay and uncontrolled state-dependent 
switching. We specify that this assumed problem had as starting point the challenges risen
by the behavior of the mathematical model of EHS, one of the most popular mathematical
models of automation: remembering Norbert Wiener’s words “the present age is the age of
servomechanisms” [39] . EHSs recently attracted attention in control community. At least a 
few works are to be mentioned [40–43] , but also results like: the robust tracking control
synthesis based on three compensators [44] , the using of Lyapunov–Malkin paradigm [45] to
handle the equilibrium stability critical case [46] , the nonlinear geometric switching type 
control synthesis [47] , the backstepping control synthesis [48] , the equilibrium stability in
servoelastic framework control [49] , the synthesis for model parametric uncertainty [50] etc. 
Excepting paper [47] , all these quoted papers, and many others, provide only partial solutions,
to the extent that they disregard the nature of the EHS model as described by two compo-
nents according to the sign of one of its state variables. Particular attention was paid to the
hydraulic control systems starting from the Second World War when the mechanohydraulic 
servomechanisms equipped the military aircraft [51 , 52 ]. After 1949, they became parts of the
mechanical engineering system of jet airlines for civil transport. A fundamental bibliography 

in the field should contain the references such as [53–55] . 
The solution of the problem stated above is addressed in a first step in Section 2 . Namely,

the stability of the linearized systems through Taylor series development is approached 

separately, eluding for the moment the switching structure. We specify that in the paper 
the delayed control variable is present in the nonlinear system through a linear term with



I. Ursu, D. Enciu and G. Tecuceanu / Journal of the Franklin Institute 357 (2020) 3680–3701 3683 

c  

f  

d  

a  

o  

l  

s  

v  

 

s  

n  

t  

f  

s
s  

t  

s  

o  

w  

s

2

 

l  

c  

n  

b  

o  

s  

d  

t
 

w  

s

2

 

C  

w

x  

 

a  

u  

[  
onstant matrix coefficient, which therefore does not require linearization. The predictive
eedback method is used to compensate for delay in the linearized system with actuator
elay. Thus, the delay on the actuator is replaced with a state delay, with the consequence of
dding a non-homogeneous term that contains the effect of the applied control. The method
f predictive feedback is applied in a different approach from some existing ones in the
iterature (see, e.g., [56] ), but consistent with others (see, e.g., [57] ). Given that the obtained
tate delay came from a delay in control, usually well defined by a chosen maximal constant
alue, in this paper it was not necessary to resort to the networked time delay concept [58 , 59 ].

In Section 3 , in the second step of the problem solving, sufficient conditions for asymptotic
tability of equilibrium are given for the extended nonlinear systems, this time considering
onlinear system components together, as a switched system in whole. A first main contribu-
ion of the paper, Theorems 2 and 3 , are in fact a reassessment and extension of the results
rom paper [60] given for two open loop linear systems with state delay and controlled
witching. What is important to note is that Theorem 3 presents a generalized result for m
ystems, also valid for the case of a state-dependent controlled switching. The checking and
he criticism of the results is done in Section 4 by numerical simulations on a consecrated
ystem, the mathematical model of the EHS. To the best of our knowledge, this application
f the two Theorems on this mathematical model is a new and important extension of the
orks elaborated by the authors and represents a second main contribution of the paper. The

tudy ends with concluding remarks. 

. A short review on systems with delay. Predictive feedback control design 

This Section begins with some basic definitions regarding the Lyapunov stability for non-
inear systems with time delay. A common strategy in control theory is to synthesise the
ontrol law on the linearized system and then to evaluate the stability and robustness of the
onlinear system in the closed loop thus obtained. Here we have a delayed control, which will
e addressed with the predictive feedback method. Thus, a closed loop system like system ( 1 )
r system ( 8 ) is obtained, hence it is legitimate to refer to the definitions of stability to the
ystem ( 1 ). We mention that there is another synthesis method in the case of systems with
elayed control, the reduction method [19] , which finally gives a closed loop system similar
o the one obtained through the predictive feedback method. 

At the end of the Section, the Krasovskii general theorem of stability for nonlinear systems
ith state delay is presented, which will be extended in Section 3 to switched systems with

tate delay. 

.1. Basic definitions related to Lyapunov stability of nonlinear systems with delay 

Suppose that f : D × D → � 

n is a locally Lipschitz and continuous function defined on
artesian products of domains D ⊂ � 

n into � 

n , and consider the nonlinear differential system
ith delay 

˙  ( t ) = f ( x ( t ) , x ( t − h ) ) (1)

This expression is obtained even if one starts from a nonlinear system with delay on the
ctuator and then the state feedback loop is closed, as it will be done in Sections 3 and 4 . Let
s note by x ( t; t 0 , ϕ ) the solution of system ( 1 ) with initial condition x ( θ; t 0 , ϕ ) := ϕ(θ ) , θ ∈
 t 0 − h, t 0 ] , often written as x ( t 0 + θ ) = ϕ(θ ) , θ ∈ [ t 0 − h, t 0 ] . The initial conditions refer
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therefore to initial time t 0 ≥ 0 and an initial function ϕ : [ t 0 − h, t 0 ] → � 

n , belonging to a
certain functional space, e.g., to the normed space of continuous functions C( [ t 0 − h, t 0 ] , � 

n ) 

with the Euclidean norm ‖ ϕ‖ h = sup t 0 −h≤θ≤t 0 ‖ ϕ(θ ) ‖ . The solution exists and is unique in
well-defined conditions (see, for more details, [13] , §1.2. Th. 1.1). If the practical method of
building the solution is the step-by-step method, then it is clear that in order to advance one
step it is necessary to know the solution along the previous step. Let’s introduce one of the
attributes of system ( 1 ), the state x t ( t 0 , ϕ ) := x( t + θ ) , θ ∈ [ t 0 − h, t 0 ] at a time instant t ≥ t 0 
along a solutio n x ( t; t 0 , ϕ ) , defined as the restriction of this solution on the time interval
[ t − h, t ] . If there is no risk of confusion, the arguments t 0 (usually, 0) and ϕ can be omitted,
thus writing x (t ) instead of x ( t; t 0 , ϕ ) and x t instead of x t ( t 0 , ϕ ) . In fact, system ( 1 ) is often
written as follows 

˙ x ( t ) = f ( x t ) , x t ∈ C ( [ −h, 0 ] , � 

n ) (1a) 

As in the consecrated approach to the Lyapunov’s stability theory, a certain equilibrium 

point of system ( 1a ), if there is one, will be previously translated to zero. A perturbation of
this zero equilibrium is introduced as x ( t 0 , ϕ ) = ϕ(0) = x 0 � = 0. Some definitions for what
is commonly known as stability in the sense of Lyapunov will be briefly presented from
well-known sources such as [8 , 13 ], as well as [61–64] . Obviously, the concept of instability
simply results from the denial of the definition of stability. 

Definition 1 ([ 8 ], apud [13] , Definition 1.2) . The zero equilibrium (or zero solution) of
Eq. (1a) is said to be stable if for any ε > 0 there exists δ(ε) > 0 such that for every
initial condition x 0 and function-condition ϕ ∈ C with ‖ x 0 ‖ ≤ ‖ ϕ‖ h < δ(ε) , the inequality 

‖ x ( t; t 0 , ϕ ) ‖ < ε holds for t ≥ 0. 

Unlike the cited sources, where the definition was given for non-autonomous systems, we 
transcribed the definition in the case of autonomous system ( 1a ). A second, non-essential,
difference appears by the presence of the initial condition, which explains how to introduce 
the disturbance of the equilibrium state, see the simulations in Section 4 . For non-autonomous
systems, like system ( 1 ), there may be an additional dependence of δ, δ = δ( ε, t 0 ) . If δ can be
chosen independently of t 0 , then the zero solution would have been called uniformly stable.
For autonomous systems the stability and uniform stability coincide, since the change of t 0 
only returns to a corresponding translation of the solution over time. In other words, the value
δ(ε) is always smaller than or equal to ε [13] , and the above-defined stability is a weak one.
A stronger stability is introduced further. 

Definition 2 ([ 13 ], Definition 1.3, [63] , Definition 5.6) . The zero solution of Eq. (1a) is said
to be asymptotically stable if (a) it is stable and (b) it is an attractor, i.e., once δ(ε) > 0 is
chosen such that ‖ x 0 ‖ ≤ ‖ ϕ‖ h < δ(ε) , then x( t, t 0 , ϕ ) → 0 as ( t − t 0 ) → ∞ . The set of x 0 

points that meet the previous condition is called the basin of zero solution. 

Definition 3 ([ 13 ], Definition 1.4) . The zero solution of system ( 1 

′ ) is said to be expo-
nentially stable if there exist �0 > 0, σ > 0, and γ ≥ 1 such that for every t 0 ≥ 0 and
any initial function ϕ ∈ P C( [ −h, 0 ] , R 

n ) , with ‖ ϕ‖ h < �0 , the following inequality holds:
‖ x( t, t 0 , ϕ ) ‖ ≤ γ ‖ ϕ‖ h e −σ ( t−t 0 ) , t ≥ t 0 . 

Obviously, the exponential stability is even stronger than the asymptotic one, given the 
fastest decrease to zero of the perturbed solution, the exponential decrease. 

The types of stability defined so far refer to local stability, in the sense that they describe
the behavior of the solutions that have as a start in a limited neighbourhood of the equilibrium
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oint. The zero solution of system ( 1a ) is globally asymptotically stable if it is stable and if
t is a global attractor. The zero solution is a global attractor if its basin is equal to � 

n . 
We have recalled these definitions to mark the fact that in any system of the real world,

s is the system discussed in Section 4 , there are geometric, constructive and functional
estrictions, which are reflected in the size of the states. Therefore, for dynamic real world
ystems, especially for the feedback ones, it is difficult, if not impossible, to speak about
omething different than the local stability, in the sense of the above definitions. 

.2. The predictive feedback synthesis method for linear systems with actuator delay 

Consider the basic linear time invariant system 

˙  ( t ) = A x ( t ) + B c u ( t − h ) , A ∈ � 

n×n , B c ∈ � 

n×1 

 ( t ) = u 0 ( t ) , −h ≤ t ≤ 0, h > 0, x ( 0 ) = x 0 � = 0 

(2)

here ( A , B c ) is a complete controllable pair [18 , 65 ]. The objective is to study the zero equi-
ibrium of the system for t > 0, given a state feedback control u( x( t ) ) and initial conditions
 0 (. ) , x 0 ; the last one is introduced as a perturbation of the zero equilibrium in Eq. (2) . If
he delay h is not too large, a control law obtained, for instance, by the finite-dimensional
QR (Linear Quadratic Regulator) algorithm [65 , 66 ] has a certain robustness, therefore the
tability of the system is preserved [67] . In the case of a relatively large delay h, the stability
s no longer guaranteed. In paper [66] , the synthesis of the control was extended within the
QG (Linear Quadratic Gaussian) framework, having as a guide work [68] . 

The first solution to increase robustness in the presence of delays, in the frequency do-
ain and for single-input-single-output systems stable in open-loop, was proposed in the late

950s, namely the well-known Smith predictor [15] . The method was fruitful but also contro-
ersial for shortcomings concerning the robustness. Indeed, a very recent work recommends
o “forget the Smith predictor”, and use instead a well-tuned PI (Proportional-Integral) or PID
Proportional–Integral–Derivative) controller [69] . Throughout the ’60s–’80s, new approaches
elated to system ( 2 ) have emerged, e.g., the finite spectrum assignment method [17] and the
rtstein–Kwon–Pierson reduction method [18 , 19 ]. The two related methods ultimately led to

he predictive feedback control method even if they started from different ideas. A remark
rom [57] is worth remembering: against appearances, system ( 2 ) has “a finite dimensional
avor”. 

The predictive feedback method may be summarized as follows. The method is based on
he assumption that system ( 2 ) in the absence of the delay can be stabilized with a feedback
ontrol u(t ) = Kx (t ) . The objective is to find a feedback control law in the presence of the
elay such that u( t − h ) = Kx (t ) , what can be written as u(t ) = Kx ( t + h ) (which appears
s no implementable!), so a state predictor is previously necessary. 

roposition 1. Consider system ( 2 ) with ( A , B c ) a controllable, or at least stabilizable pair.
 may be even unstable. By considering a state predictor 

 p ( t ) : = x ( t + h ) = e A h x ( t ) + 

∫ 0 

−h 
e −A s B c u ( t + s ) ds (3)

he system with control delay Eq. (2) can be replaced with the following non-homogeneous
ystem with state delay 

˙  ( t ) = A x ( t ) + A d x ( t − h ) + B c K 

∫ 0 

−h 
e −A s B c u ( t + s − h ) ds, A d : = B c K e A h . (4)
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Proof. Relationship Eq. (3) is easy to check by making the derivative and taking into account
that (see Eq. (2) ) 

˙ x ( t + h ) = A x ( t + h ) + B c u ( t ) . (5) 

Now, calculate a feedback gain K for system ( 2 ) (based for example on the LQR algorithm
[65] ), as if the system was without delay. Introducing the feedback predictive control 

u ( t ) = Kx ( t + h ) = K 

(
e A h x ( t ) + 

∫ 0 

−h 
e −A s B c u ( t + s ) ds 

)
(6) 

and substituting the control variable u( t − h ) in Eq. (2) lead to system ( 4 ). �
It is not without interest to make two Remarks. 

Remark 1. The non-homogeneous part of linear system ( 4 ) is an integral term that naturally
contains the effect of the control variable 

B c K 

∫ 0 

−h 
e −A s B c u ( t + s − h ) ds. (7) 

It can be easily to check that the control variable in Eq. (7) is causal and consequently the
control law to the actuator is implementable. Indeed, the system ˙ x (t ) = A x (t ) + B c u( t − h ) ,
with initial conditions u 0 (. ) , x 0 , can be integrated so giving the solution x (t ) on the inter-
val [ 0, h ] . Thus u(t ) = Kx (t ) , t ∈ [ 0, h ] , is known. Further, on the interval [ h, 2h ] , it is
necessary to know u(t ) on the interval [ −h, h ] translated one step h back. Indeed, the con-
trol variable argument varies on Cartesian product [ h, 2h ] × [ −h, 0 ] of t and s variation,
respectively. When referring to the lower limit h of the t variation, then the argument of u
varies in the range [ −h, 0 ] . When referring to the upper limit 2 h of the t variation, then the
argument of u varies in the range [ 0, h ] . The same reasoning is repeated for each interval.
This approach of finding a solution with an initial value problem Eq. (2) is known as the step
by step method [2] . 

Remark 2. The discretization of the non-homogeneous term, necessary for the on-line im- 
plementation of control, could destabilize the closed loop system [70] . 

2.3. A classical stability theorem for zero solution of nonlinear systems with state delay 

Let V : C → � be continuous and x t be the solution of Eq. (1a) , generated in the presence
of a disturbance of the equilibrium state. The upper right-hand derivative of V ( x t ) along the
solution of Eq. (1a) is defined by 

˙ V ( x t ) = lim sup 

s→ 0 + 
1 
s [ V ( x t+ s ) − V ( x t ) ] . 

Theorem 1. Consider the system defined by Eq. (1a) . Suppose that f : C → � 

n maps ev-
ery bounded set of C into a bounded set in � 

n and that α, β, ψ : [ 0, ∞ ) → [ 0, ∞ ) are
continuous nondecreasing functions, and α(0) = β(0) = 0. A sufficient condition of asymp-
totic stability of the zero solution of Eq. (1a) is the existence of a continuous differentiable
function V : C → � with the properties 1) α( ‖ x ( t ) ‖ ) ≤ V ( x t ) ≤ β( ‖ x t ‖ h ) and 2) ˙ V ( x t ) ≤
−ψ( ‖ x ( t ) ‖ ) . 

Most of the consulted sources [1 , 7 , 13 , 71 ] say that Theorem 1 , often called Lyapunov–
Krasovskii Stability Theorem, originated in Krasovskii’s book [8] , see Theorems 31.1–31.3. 
The above-mentioned version is close to that of [7] and [60] , the latter quoting as source [4] .
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A functional V ( x t ) satisfying the conditions of Theorem 1 is called a Lyapunov–Krasovskii
unctional [13 , 60 ]. Thus, the Lyapunov function, dependent on state x (t ) , is replaced by a
unctional dependent on the “true” state x t [13] . 

. A stability theorem for nonlinear structural switching system with actuator delay 

In Section 2 , it was shown that, by applying a predictive feedback control based on a LQR
ynthesis, the linear system with actuator delay Eq. (2) can be reduced to a linear system
ith state delay Eq. (4) , and with a non-homogeneous term Eq. (7) containing the effect of

he control variable. The following nonlinear feedback system with structural switching and
elay transferred from control to state is now considered: 

˙ x ( t ) = A i x ( t ) + A di x ( t − h ) + B c K i 

∫ 0 

−h 
e −A i s B c u i ( t + s − h ) ds + F i [ x ( t ) ] , 

 di : = B c K i e 
A i h , i = 1 , ..., m. (8)

System ( 8 ) is nonlinear switching extension of system ( 4 ), in which are added the re-
ainders of order one F i ( x ( t ) ) from the Taylor series development around the origin. The

valuation of such terms is not a simple matter, especially in the case of mathematical models
haracterizing real world, as in Section 4 . To analyse a switched system like Eq. (8) , one
ore key-Assumption (A3) must be added to Assumptions 1 and 2 of Theorem 1: 

(A 1 ) There exist the continuous positive increasing functions α, β : [ 0, ∞ ) → [ 0, ∞ ) ,
α(0) = β(0) = 0 and the continuous functions V i ( x t ) : C → � such that α( ‖ x (t ) ‖ ) ≤
V i ( x t ) ≤ β( ‖ x t ‖ h ) , i = 1 , ..., m. 

(A 2 ) For each i = 1 , ..., min Eq. (8) , there are the continuous increasing functions ψ i (·)
with the properties ψ i (s) > s for s > 0, ψ i (0) = 0 and 

˙ V i ( x t ) ≤ −ψ i ( ‖ x (t ) ‖ ) , wherein
the derivative is considered along the system trajectories. 

(A 3 ) There is μ > 1 such that V i ( x t ) ≤ μV j ( x t ) for all x t ∈ C( [ −h, 0 ] , � 

n ) and for i � = j.

The equilibrium stability of system ( 8 ) will be addressed using an extension of the func-
ional from [60] , and, in accordance with Section 2.3 , we will also call it a Lyapunov–
rasovskii functional. The following theorem shows the conditions under which the proposed

unctional fulfils (A 1 ) and (A 2 ). 

heorem 2. Consider system ( 8 ) with: (a) A i − Hurwitz matrices, therefore there are symmet-
ic positive definite matrices P i satisfying Lyapunov matrix equations A 

T 
i P i + P i A i = −Q i for

ome symmetric positive definite matrices Q i and (b) A di − small enough matrices, specifically
 P i A d i ‖ < λmin ( Q i ) / 2 , therefore there are ω i > 0 such that ‖ P i A d i ‖ ≤ ω i < λmin ( Q i ) / 2 . For
ach i = 1 , ..., m in Eq. (8) , the following Lyapunov–Krasovskii functional is considered 

 i ( x t ) = x 

T ( t ) P i x ( t ) + ω i 

∫ t 

t−h 
‖ x ( s ) ‖ 2 ds (9)

here ω i > 0. Then ( A 1 ) , ( A 2 ) are fulfilled for all i = 1 , ..., m, as long as the functions
 i ( ‖ x ( t ) ‖ ) := { λmin ( Q i ) − 2[ ω i + λmax ( P i )( M i ‖ x ‖ + N i ) ] } ‖ x (t ) ‖ 2 are positive. 

roof. It is easy to see that (A 1 ) is fulfilled if one choose α( ‖ x ( t ) ‖ ) = min i ( λmin ( P i ) ) ‖ x (t ) ‖ 2 
nd β( ‖ x t ‖ h ) = max i ( λmax ( P i ) + ω i h ) ‖ x t ‖ 2 h [60] . A calculation not very complicated, see be-
ow, establishes the expressions of functions ψ i ( ‖ x ( t ) ‖ ) and, consequently, the conditions that
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the system parameters have to fulfil in order that Assumption (A 2 ) holds. In the following, the
control variable will be substituted based on the state value, u i (t ) = K i x (t ) ). Also, we will be
interested in a formula defining an upper bound of F i [ x (t ) ] terms in Eq. (8) . For each fixed i,
consider a fixed component f i,l of the vector function f i in Eq. (1) (we indexed with i the vec-
tor function f , since we take the structure from Eq. (1) for switched systems). A such upper
bound is to be found, taking into account the Lagrange form of the R 1 remainder of order one in

Taylor series development of the component f i,l (x ) , ( F i [ x (t ) ] ) l := R 1 = 

1 
2 

∑ n 
j,k=1 

∂ 2 f i,l 
∂ x j ∂ x k 

(b) x j x k 
(with () l was noted the component l of the vector in parentheses). R 1 exists if the func-
tion f i,l (x ) is twice differentiable in b. Moreover, R 1 (x ) = o( | x| ) as x → 0. In compact vector
form, each ( F i [ x (t ) ] ) l term is written as x 

T H (b) x / 2 , and includes the Hessian matrix H 

calculated in a point b = t ∗x, t ∗ ∈ ( 0, 1 ) . Because it is usually very difficult to find exactly
this t ∗ ∈ ( 0, 1 ) , instead we will look for numbers M i > 0 that we know they exist, such that
‖ F i [ x (t ) ] ‖ ≤ M i ( ‖ x ‖ 2 ) . Therefore, we will calculate: 

˙ 
 i ( x t ) = ˙ x 

T ( t ) P i x ( t ) + x 

T P i ̇  x ( t ) + ω i 
(‖ x ( t ) ‖ 2 − ‖ x ( t − h ) ‖ 2 )

= 

( 

x 

T ( t ) A 

T 
i + x 

T ( t − h ) A 

T 
di + F 

T 
i [ x ( t ) ] + 

[
B c K i 

∫ 0 

−h 
e −A i s B c u ( t + s − h ) ds 

]T 
) 

P i x ( t ) 

+ x 

T P i 

(
A i x ( t ) + A di x ( t − h ) + F i [ x ( t ) ] + 

[
B c K i 

∫ 0 

−h 
e −A s B c u ( t + s − h ) ds 

])

+ ω i 
(‖ x ( t ) ‖ 2 − ‖ x ( t − h ) ‖ 2 )

= x 

T ( t ) 
(
A 

T 
i P i + P i A i 

)
x ( t ) + 2 x 

T ( t ) P i A di x ( t − h ) 

+ ω i 
(‖ x ( t ) ‖ 2 − ‖ x ( t − h ) ‖ 2 ) + 2 x 

T ( t ) P i F i [ x ( t ) ] 

+ 2 x 

T ( t ) P i 

[
B c K i 

∫ 0 

−h 
e −A i s B c u ( t + s − h ) ds 

]

≤ −λmin ( Q i ) ‖ x ( t ) ‖ 2 + ω i 
(‖ x ( t ) ‖ 2 + 

‖ x ( t − h ) ‖ 2 )
+ ω i 

(‖ x ( t ) ‖ 2 − ‖ x ( t − h ) ‖ 2 ) + 2 M i λmax ( P i ) ‖ x ( t ) ‖ 3 

+ 2h λmax ( P i ) λmax ( B c K i ) 
2 max 

−h≤s≤0 

∥∥e A i s 
∥∥‖ x ( t ) ‖ 2 

≤ −{ λmin ( Q i ) − 2 [ ω i + λmax ( P i ) ( M i ‖ x ( t ) ‖ + N i ) ] } ‖ x ( t ) ‖ 2 

which ends the proof. �
In order to demonstrate the stability theorem, two more Propositions are needed. 

Proposition 2. If the assumption (A 2 ) is fulfilled, then for any pair of consecutive switching
times { t p , t q } of the i th component of system ( 8 ) with t p < t q and with i th component system
active at t p and t q , respectively, there are the constants 0 < ξi < 1 , i = 1 , ..., m such that 

 i 
(
x t q 

) − V i 
(
x t p 

) ≤ −ξi V i 
(
x t p 

)
(10) 

Proof. Once the equilibrium x = 0 of the dynamic autonomous system ( 8 ) is perturbed,
it will evolve as a switched system, but so that V i ( x t ) are strictly decreasing, since
˙ 
 i ( x t ) < 0, excepting x = 0. An other presumptive equilibrium point is x e with ‖ x e ‖ =

[ λmin ( Q i ) − 2( ω i + λmax ( P i ) N i ) ] / 2 λmax ( P i ) M i , but this is reached only as time tends to infin- 



I. Ursu, D. Enciu and G. Tecuceanu / Journal of the Franklin Institute 357 (2020) 3680–3701 3689 

i  

�

 

a  

t  

c  

i

P

P  

o

μ

T  

t

 

a  

m  

t  

c  

t  

l  

a  

t

P  

s  

t  

m  

r
F  

o  

a
w  

f  

V  

t  

n  

e  

t  

μ  

3  

l  

V  
ty. Then V i ( x t q ) − V i ( x t p ) < 0, so there is 0 < ξi < 1 , such that V i ( x t q ) − V i ( x t p ) ≤ −ξi V i ( x t p ) .

The last inequality would only be contradicted by the cancellation of the “energy” derivative
long a whole trajectory interval, and not just within a point. Either, this would mean that the
otal energy of a moving system remains constant, as for example in the case of a stable limit
ycle, generated by essential nonlinearities such as dead zone, saturation etc. We exclude this
nconvenience in this paper. 

roposition 3. Lyapunov–Krasovskii functional Eq. (9) fulfils Assumption (A 3 ). 

roof. For compliance, we note that the demonstration is given in detail in [60] and is based
n the choice. 

= max 

{
sup i, j 

λmax ( P i ) 

λmin ( P j ) 
, sup i, j 

ω i 

ω j 

}

�

heorem 3. A sufficient condition of asymptotic stability of the zero solution of system ( 8 ) is
hat the functionals V i ( x t ) , i = 1 , ..., m given by Eq. (9) meet assumptions (A 1 ), (A 2 ). 

The result given in [60] is performed in the simplified case m = 2, perfectly suited for the
pplication in Section 4 , in which a switching called structural, as defined by the mathematical
odel of EHS, was considered. In the following, we will give a general result, applicable

o a system with multiple switches, realized either structurally, as in the case of EHS, or by
ontrol. This is for example the case of the gain scheduling control of an airplane, in which
he flight mission is performed with a number of controllers associated with a number of
inearized components of the nonlinear mathematical model depending on the flight height
nd speed. Therefore, the approach from [60] will be extended to the case of m systems of
ype Eq. (8) , also clarifying some of the statements there. 

roof. Thus, consider Lyapunov functionals V 1 ( x t ) , ..., V n ( x t ) for the switching system ( 8 )
atisfying conditions (A 1 ), (A 2 ). For technical reasons, without affecting the generality, since
he succession of the switches changes from case to case (in the given example of the flight

ission), let’s admit that after m + 2 switches the system went through all the m configu-
ations, which we would call modes; such a succession could 1, 4, 3, 2, 3, 4, 1, 5, 6,…, m
rom (A 1 ) and based on the continuity of increasing functions α(·) and β(·) , α ≤ β, it is
bvious that for any ε > 0 there exist δ(ε) > 0 and μ > 1 such that β(δ) = α(ε) / μm+2 . Now,
ssume that the subsystem with i = 1 is active on [ t 1 , 0 , t 1 , 1 ) and ‖ x ( t 0 + θ ) ‖ = ‖ ϕ(θ ) ‖ ≤ δ

here t 1 , 0 is an initial time and θ ∈ [ −h, 0 ] . This inequality in norm is ensured by the
act that δ and μ can be conveniently chosen. According to (A 2 ), ˙ V 1 < 0 on [ t 1 , 0 , t 1 , 1 ) , thus
 1 ( x t 1 , 1 ) < V 1 ( x t 1 , 0 ) ≤ β(δ) = α(ε) / μm+2 , for t ∈ [ t 1 , 0 , t 1 , 1 ) . Then, we assume that at time t 1 , 1 ,
he subsystem with mode i = 1 , active on [ t 1 , 0 , t 1 , 1 ) , switches (as a result of an inherent dy-
amic change of sign of a variable x q , q ∈ { 1 ÷ n } , to the subsystem with i = 4 (as in the
xample given above), which will be active on [ t 4, 0 , t 4, 1 ) . Thus, taking into account the con-
inuity of functional V 1 in t 4, 0 := t 1 , 1 and according to (A 3 ), we have V 4 ( x t 4, 0 ) ≤ μ V 1 ( x t 4, 0 ) <

α(ε) / μm+2 = α(ε) / μm+1 . After another m + 1 switches as in the example given above 4,
, 2, 3, 4, 1, 5, 6,…, m , and based on the same Assumption (A 2 ) and on relation ( 10 ), the fol-
owing sequence of inequalities is obtained: V 1 ( x t ) < V 1 ( x t 1 ,k ) < V 1 ( x t 1 , 0 ) < α(ε) , V 2 ( x t ) <
 2 ( x t 2,k ) < V 1 ( x t 2, 0 ) < α(ε) ,…, V m 

( x t ) < V m 

( x t m,k ) < V 1 ( x t m, 0 ) < α(ε) , valid, respectively, on the
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overlapped intervals t ∈ [ t 1 ,k , t 1 ,k+1 ) , ..., t ∈ [ t m,k , t m,k+1 ) , k = 0, 1 , ... . Therefore, putting to-
gether the above mentioned relationships, it results V i ( x t ) ≤ α(ε) for t ≥ t 1 , 0 , i = 1 , ..., m.
Thus, for now, it has been shown the boundedness of Lyapunov–Krasovskii functionals, 
so it was shown that the “energy” of the system perturbed by initial conditions does not
increase. But we will show that this energy, measured by the Lyapunov–Krasovski func- 
tional, decreases indefinitely as time increases. It is easy to see that, according to rela-
tion ( 10 ), V 1 ( x t 1 ,k ) ≤ ( 1 − ξ1 ) 

k V 1 ( x t 0 ) < ( 1 − ξ1 ) 
k α(ε) < α(η) for t 1 ,k ≥ t M 

, …, V m 

( x t m,k ) ≤
( 1 − ξm 

) k V m 

( x t m, 0 ) < ( 1 − ξ2 ) 
k α(ε) < α(η) for t m,k ≥ t M 

, where M is evaluated from inequal- 
ity M > max 

i=1 ,...m 

( 1n( α( η) ) − 1n( α( ε) ) ) / 1n( 1 − ξi ) , η ∈ ( 0, ε ) . The logarithm has been ap- 

plied in each of the last inequalities for V 1 ( x t 1 ,k ) ,…, V m 

( x t m,k ) , respectively. There is yet an-
other step to make, and the demonstration is over: based on (A 2 ), V m 

( x t ) < V m 

( x t m,k ) for t ∈
[ t m,k , t m,k+1 ) and choosing T ≥ t M 

− t 1 , 0 , it results what we intended to prove, namely 

 i ( x t ) < α(η) forall t ≥ t 0 + T . In other words, with the restrictions stipulated in Theorem 2 ,
the equilibrium of system ( 8 ) is asymptotically stable, the energy of the perturbed system,
measured by the Lyapunov-Krasovski functional, vanishing over time. �

The principle of equilibrium stability as a consequence of the evolution of the total energy
of a system to a minimum originates in the works of the Italian mathematician and physicist
Torricelli [63] . In the following, the results from this Section are applied to study the stability
of the EHS model with structural switching and delayed control. 

4. Evaluation of conservativeness of results given in Theorem 3 for mathematical 
model of EHS 

After the World War II, EHSs gained significant spreads and they became the right choice
for a variety of areas: civil engineering, machine tools, mobile equipment and robots, radar
antenna, land vehicles, naval and aerospace systems, missile launchers [52] . Thus, the study
of stabilization and tracking problems for EHS is always attractive and important. EHS do
not only allow the generation of large forces, but, thanks to modern control technology and
sensors, are also capable of assuming important control tasks as, for example, highly precise
positioning of heavy loads. The basic servovalve controlled EHS is a combination between 

an electrohydraulic servovalve (EHSV) and a hydrocylinder. EHS is itself an actuator with 

feedback, but it can be viewed broadly as a system with feedback of the real world, and
the delay on control will be regarded as a delay of the control signal in the block of the
EHSV. The mathematical model of EHS is a strongly nonlinear one, and reveals a switching
nonlinearity due to constructive directional changes in the spool valve ports opening [47 , 72 ].
This physical aspect gives the mathematical model the statute of a system with structural,
autonomous switching. 

We will apply the results obtained in Section 3 to a mathematical model of EHS. The
mathematical model below, inspired by paper [73] , is the only one which satisfies the condition
that the Jacobian matrices are Hurwitz matrices, as required by Theorems 2 and 3 , among
so many other studied models [28 , 31 , 47 , 48 , 50] with five states or with structural switching,
which do not satisfy this condition. This mathematical model represents the splitting of the
EHS system into two subsystems corresponding to x 5 > 0 and x 5 < 0, respectively. 

˙ x 1 = x 2 ; ˙ x 2 = ( −k x 1 − f x 2 + S x 3 − S x 4 ) /m 

˙ x 3 = B 

(
C x 5 

√ 

p s − x 3 − S x 2 + k l ( p s − 2 x 3 ) 
)
/ ( V 0 + S x 1 ) 
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˙  4 = B 

(−C x 5 
√ 

x 4 + S x 2 + k l ( p s − 2 x 4 ) 
)
/ ( V 0 − S x 1 ) 

˙  5 = ( −x 5 + k SV u 1 ( x ( t − h ) ) ) / τSV (11)

˙  1 = x 2 ; ˙ x 2 = ( −k x 1 − f x 2 + S x 3 − S x 4 ) /m 

˙  3 = B 

(
C x 5 

√ 

x 3 − S x 2 + k l ( p s − 2 x 3 ) 
)
/ ( V 0 + S x 1 ) 

˙  4 = B 

(−C x 5 
√ 

p s − x 4 + S x 2 + k l ( p s − 2 x 4 ) 
)
/ ( V 0 − S x 1 ) 

˙  5 = ( −x 5 + k SV u 2 ( x ( t − h ) ) ) / τSV , C := c d w 

√ 

2/ρ. (12)

The initial conditions are u i (t ) = u 0,i (t ) , −h ≤ t ≤ 0, h > 0, x i (0) = x 0,i � = 0, i = 1 , 2.
he magnitude of the perturbation x ( t 0 , ϕ i ) = ϕ i (0) = x 0, i � = 0 is conditioned by the norm
 ϕ i ‖ h = sup t 0 −h≤θ≤t 0 ‖ ϕ i (θ ) ‖ . For convenience, the vector functions ϕ i are taken as constants.
he difference of models ( 11 ) and ( 12 ) with respect to the models indicated above consists

n the presence of both leakages, internal, in spool valve of EHSV, and external, in hydro-
ylinder. The tank pressure, near of atmospheric pressure, is neglected. In the absence of any
eakage in the physical model, the Jacobian matrices have two critically zeros, and a model
uch as that assumed in [55] with external and internal leakages, has singularity in the case of
 1 = 0. The notations in Eqs. (11) and ( 12 ) refer to the variables, parameters, and constants
artially described in Fig. 1: x 1 is the load displacement, x 2 is the load velocity, x 3 , x 4 are
he pressures in the hydraulic cylinder chambers, x 5 is the EHSV spool valve opening and u
s the control variable, an input voltage; p s is the supply pressure; m is the equivalent inertial
oad of primary control surface reduced to the actuator rod; f is the combined coefficient of
he damping and viscous friction forces on the load and the cylinder rod; k is an equivalent
erodynamic elastic force coefficient; k l is the cumulative coefficient of leakages, see above;
 is the effective area of the piston; V 0 is the cylinder semivolume; B is the bulk modulus of
ydraulic oil; τSV is the servovalve time constant; k SV is a coefficient of proportionality be-
ween the servovalve voltage and the displacement of the servovalve spool; c d is the discharge
oefficient in the servovalve spool; w is the valve port’s width; ρ is the hydraulic oil density.
e assume 0 < x i < p s , i = 3, 4, and | x 1 | < V 0 /S. Besides the four state variables defining

he valve-actuator-load system, it was considered a first order dynamics of the EHSV. It has
o be said that the synthesis of the control variable for EHS is far from being trivial, firstly
ue to strongly nonlinear hydraulic dynamics, but also due to the switching character of valve
orts opening and, herein, due also to considering the delay on input (control) variable; the
atter two issues were the subject of special attention in this article. 

Let’s now prepare the system for applying the machinery of Lyapunov equilibrium sta-
ility. Accordingly, first the Jacobian matrices of the two component subsystems are calcu-
ated Eqs. (11) and ( 12 ). Let x 0 , positive or negative, be an equilibrium point for the state
ariable x 1 , with the fulfilment of the condition | x 0 | < V 0 /S regarding the piston stroke. In
act, each subsystem will have its equilibrium point, compatible with the direction of the
iston rod movement, from left to right or vice versa, with the sign of state variable x 5
nd with the conditions to ensure the positivity of the quantities under radicals. For ex-
mple, for subsystem 1, defined by the condition x 5 > 0, an initial position of the load is
elected, ˆ x 1 , 1 = x 0, 1 , the load velocity will be naturally ˆ x 2, 1 = 0 and, with a choice of pressures
air ˆ x 3 , 1 = p s / 2 + k x 0, 1 / (2S) , ˆ x 4, 1 = p s / 2 − k x 0, 1 / (2S) to ensure zero velocity, the fifth state
quilibrium ˆ x 5 , 1 will be a solution of the equation C x 5 

√ 

( p s − k x 0, 1 /S ) / 2 − k l k x 0, 1 /S = 0.
he calculations are similar for subsystem 2 defined by the condition x 5 < 0, with the same
hoice of the equilibrium ˆ x 1 , 2 = x 0, 2 , ˆ x 2, 2 = 0 and so on. Equilibrium conditions are added to
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control variables: k SV u i, 0 = x 5 ,i , i = 1 , 2. Translate these equilibria into zero by a change of
variables 

y 1 ,i = x 1 ,i − ˆ x 1 ,i , y 2,i = x 2,i , y 3 ,i = x 3 ,i − ˆ x 3 ,i , 

y 4,i = x 4,i − ˆ x 4,i , y 5 ,i = x 5 ,i − ˆ x 5 ,i , U i = u i − u i, 0 . (13) 

The systems ( 11 ) and (12) is transformed into a system with zero equilibria in the new
coordinates system y (but with keeping for simplicity the notation x ). Let A 1 and A 2 be the
Jacobian matrices calculated in zero in the cases x 5 > 0, x 5 < 0, respectively, : 

A 1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 0 0 0 

− k 
m − f 

m 
S 
m − S 

m 0 

0 − BS 
V 0 + S ̂ x 1 , 1 

− B 
V 0 + S ̂ x 1 , 1 

(
C ̂ x 5 , 1 

2 
√ 

p s −ˆ x 3 , 1 
+ 2 k l 

)
0 

BC 
√ 

p s −ˆ x 3 , 1 
V 0 + S ̂ x 1 , 1 

0 BS 
V 0 −S ̂ x 1 , 1 

0 − B 
V 0 −S ̂ x 1 , 1 

(
C ̂ x 5 , 1 

2 
√ 

ˆ x 4, 1 
+ 2 k l 

)
− BC 

√ 

ˆ x 4, 1 

V 0 −S ̂ x 1 , 1 

0 0 0 0 − 1 
τSV 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(14) 

A 2 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 0 0 0 

− k 
m − f 

m 
S 
m − S 

m 0 

0 − BS 
V 0 + S ̂ x 1 , 2 

B 
V 0 + S ̂ x 1 , 2 

(
C ̂ x 5 , 2 

2 
√ 

ˆ x 3 , 2 
− 2 k l 

)
0 

BC 
√ 

ˆ x 3 , 2 
V 0 + S ̂ x 1 , 2 

0 BS 
V 0 −S ̂ x 1 , 2 

0 B 
V 0 −S ̂ x 1 , 2 

(
C ̂ x 5 , 2 

2 
√ 

p s −ˆ x 4, 2 
− 2 k l 

)
− BC 

√ 

p s −ˆ x 4, 2 

V 0 −S ̂ x 1 , 2 

0 0 0 0 − 1 
τSV 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(15) 

The matrix of control influence B c is a column vector with the first four elements zero
and with the fifth element equal with k SV / τSV . 

There are two objectives of numerical simulation in this Section: (a) the synthesis of the
LQR control by the predictive feedback method (see Proposition 2 ), which is a necessary
step to move to the next point (b) the evaluation of the parameter configurations of the
EHS systems ( 11 ) and (12) (with A i given by Eqs. (14) and ( 15 )), from the perspective of
fulfilling the sufficient stability conditions of the equilibrium (see Theorem 3 ). Consider the
following design data, representing an EHS integrated in the aileron control chain of the jet
fighter IAR99 [31 , 46 , 47 , 74] : m = 30 kg, f = 3000 Ns/m, k = 300 N/m, S = 10 

−3 m 

2 , c d = 0.63,
V 0 = 3 ×10 

−5 m 

3 , p s = 210 N/m 

2 , B = 13,000 N/m 

2 , ρ = 850 kg/m 

3 , k SV = 2 ×10 

−4 m/V
(meaning a maximal opening length of rectangular valve port x 5 max = 2 mm at maxi- 
mal valve input voltage u max = 10 V, and an equivalent valve port width w = 0.85 mm),
k l = 0. 04 × 10 

−11 m 

5 /(Ns) and τSV = 7.62 ×10 

−3 s. The pairs ( A i , B c ) , i = 1, 2, are not
completely controllable, but are stabilizable, including in x 0 = 0 (the most vulnerable 
equilibrium point of a EHS [54] ) as indicated the subroutines in the Matlab&Simulink 

package. In particular, the two matrices A i Eqs. (14) and ( 15 ) are Hurwitz matrices.
For the case x 5 > 0, choosing ˆ x 1 , 1 = 5 × 10 

−3 m, the following equilibrium vector point
is obtained: ˆ x 1 , 1 = 5 × 10 

−3 m , ˆ x 2, 1 = 0 m / s , ˆ x 3 , 1 = 112. 5 × 10 

5 N/m2, ˆ x 4, 1 = 97 . 5 × 10 

5 

N/m2, ˆ x 5 , 1 = 0. 0018 × 10 

−3 m, with u 1 = 0. 0925 . The corresponding eigenvalues of matrix A 1 

Eq. (14) are: λ1 , 2 = −97 . 4 ± 1726 . 5 i, λ3 = −0. 3 , λ4 = −90, and λ5 = −131 . 2. The
control law is obtained as example by a simple LQR synthesis [65] . The LQG control
synthesis concerns the pairs ( A i , B c ) , i = 1 , 2. Thus, for the system ˙ x (t ) = A 1 x (t ) + B c u(t )



I. Ursu, D. Enciu and G. Tecuceanu / Journal of the Franklin Institute 357 (2020) 3680–3701 3693 

w  

t  

K  

A  

i  

a  

λ

 

ψ  

a  

M  

c  

s  

n  

E
 

b  

u  

i  

d  

λ  

c  

m  

i  

w  

c  

d  

c  

t  

i  

n  

x  

c  

a  

s  

t  

‖  

t  

‖
 

i  

x  

w  

s  

e  

k  
ith a cost functional defined as J = 

∫ ∞ 

0 ( x 

T (t ) Q J x (t ) + R J u 

2 (t ) ) dt the feedback con-
rol law that minimizes the value of the cost is u(t ) = −K 1 x (t ) where K 1 is given by
 1 = R 

−1 
J B c P and P is found by solving the continuous time algebraic Riccati equation

 

T 
1 P + P A − P B c R 

−1 B 

T 
c P + Q J = 0. Taking the weighting matrices Q J , as zero matrix except-

ng Q J (1,1) = 1 and R J = 0. 0025 , we obtain K 1 = [6.1005 0.0002 0.0008 − 0.0006 3.6293]
s feedback gain. In closed loop, the eigenvalues of matrix A 1 are: λ1 , 2 = −97 . 4 ± 1726 . 5 i,
3 = −10. 2, λ4 = −90, λ5 = −130. 8 . An analogous procedure is performed for i = 2. 

The key physical parameters in providing sufficient stability conditions
 i ( ‖ x ( t ) ‖ ) ≥ 0 are described in Theorem 2 , x 0i [ cm ] , k l [ c m 

5 / ( daNs ) ] , h[s] , and
re presented in Table 1 , along with the contextual mathematical parameters
 i , ‖ x (t ) ‖ , ‖ R i (t ) ‖ , N i , λmin ( Q i ) , λmax ( P i ) , ω i . Table data are associated with system

omponent 1. For component 2, close values are obtained, so they are no longer featured for
pace-saving reasons. A minimal control was used, choosing R J = 13000. It should also be
oted that in the simulations the unconventional units system ( daN, cm, s ) , suitable for the
HS model, was used. 

A few clarifications are helpful. The sizes of matrices Q i once chosen are correlated
y the sizes of matrices P i by matrix Lyapunov equation. Unfortunately, the two val-
es are always close to each other, making it difficult, even impossible, to ensure a pos-
tive expression λmin ( Q i ) − 2[ ω i + λmax ( P i )( M i ‖ x ‖ + N i ) ] . A thorough study [75] reviews
ozens of inequalities on the size of matrices Q i and P i . Such an inequality is the next:
min ( Q i ) ≤ 2 σmax ( A i ) λmax ( P i ) . Consequently, the size of matrices A i cannot be significantly
ontrolled in reasonable limits, even if an adimensionalization of systems ( 14 ) and ( 15 ) is
ade. The values ω i are clamped in the relationships ‖ P i A d i ‖ ≤ ω i < λmin ( Q i ) / 2 , i = 1 , 2,

n which the delay h is involved. The values N i are essentially influenced, in a convenient
ay, by choosing small enough gains K i . In this situation, the option that remains is to

hoose rather small disturbances x 0i to make the product M i ‖ x ‖ small enough. For remain-
ers of the Taylor series, the exact determination of the upper limits is possible only in the
ase of simple functions, of a didactic nature. In the case of the nonlinear functions in the
hird and fourth equations in each of relations ( 11 ) and ( 12 ), such a calculation of F i [ x (t ) ]
n this paper would be tedious. Instead, numerical assessments have been done, based on
umerical simulation of the systems ( 11 ) and ( 12 ). Several configurations of perturbations

ˆ  j, 1 , j = 1 , ..., 5 have been tested to find those who meet Assumption 2 by fulfilling the
onditions described in Theorem 2 . It is evident from Table 1 that these conditions, which
re sufficient but not necessary for the stability claimed by Theorem 3 , are extremely con-
ervative, since they do not allow in the context than values of perturbations very close to
he zero solution. The numerical evaluation during the simulation process of the remainders
 F i ( x ( t ) ) ‖ = ‖ ̇  x (t ) − A i x (t ) − A di x ( t − h ) − B c K i 

∫ 0 
−h e 

−A i s B c u i ( t + s − h ) ds ‖ allowed an in-
ermediate calculation of a global upper bound M ‖ x (t ) ‖ 2 , as well as of the two factors
 x (t ) ‖ , M i of the product, as shown in Table 1 and Fig. 2 . 

We add that the numerical simulation of system ( 8 ) assumed their discretization, start-
ng with the linear system with delay on the control ˙ x = A i x (t ) + B c u( t − h ) , x i (0) =
 0,i , for which the prediction x ( t + h ) is expressed by relation ( 6 ); for the equation
ith finite differences x ( n + 1 ) = A iD 

x (n) + B c D 

u(n) , x i (0) = x 0,i the prediction with k
teps is expressed through relation x ( n + k ) = A 

k 
iD 

x(n) + 

∑ n−1 
j= n−k A i 

n−1 − j 
D 

B c D 

u i ( j) , A iD 

:=
 

A i T ; B cD 

:= 

∫ T 
0 e A σ dσ B c = A i 

−1 ( e A i T − I ) B c , with A i invertible. T is sampling time, h =
T , u n := u( nT ) , for nT ≤ t ≤ ( n + 1 ) T , T > 0, n = 0, 1 , 2, . . . Discretization is ex-
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Table 1 
Configurations of key physical and mathematical parameters for stability evaluation, see Theorem 2 . 

x 01 k l h M 1 || x ( t )|| || R 1 || N 1 λmin ( Q 1 ) λmax ( P 1 ) ω 1 �1 (|| x ||) 

1 0.01 0.1 0.1 61.9 ×10 −3 0.212 0.013 1.3 ×10 −8 80 9.2 ×10 4 39.301 −1.1 ×10 3 

2 0.01 0.1 0.1 63. × 10 −3 0.212 0.013 1.3 ×10 −8 10 1.15 ×10 4 4.913 −13.657 
3 0.001 0.1 0.1 6.2 ×10 −3 0.021 1.3 ×10 −4 1.3 ×10 −8 80 9.22 ×10 4 39.421 −0.010 
4 0.001 0.5 0.1 116 ×10 −3 0.023 2.5 ×10 −3 5. x10 −10 80 2.03 ×10 4 1.790 −0.018 
5 0.001 0.05 0.1 15.7 ×10 −3 0.021 3.3 ×10 −4 5.2 ×10 −8 80 1.78 ×10 4 144.17 − 0.155 
7 0.0005 0.1 0.1 3.1 ×10 −3 0.011 3.3 ×10 −5 1.3 ×10 −8 80 9.22 ×10 4 39.37 −5.4 ×10 −4 

8 0.0003 0.1 0.1 1.86 ×10 −3 6.4 ×10 −3 1.8 ×10 −5 1.3 ×10 −8 80 9.2 ×10 4 39.43 −4.2 ×10 −5 

9 0.0001 0.1 0.1 6.2 ×10 −4 2.1 ×10 −3 1.3 ×10 −6 1.3 ×10 −8 80 9.2 ×10 4 39.43 4. × 10 −6 

10 0.0001 0.1 0.1 6.2 ×10 −4 2.1 ×10 −3 1.3 ×10 −6 1.3 ×10 −8 2000 2.3 ×10 6 985.8 1. × 10 −4 

11 0.0001 0.1 0.1 6.2 ×10 −4 2.1 ×10 −3 1.3 ×10 −6 1.3 ×10 −8 13,000 1.5 ×10 7 6.49 ×10 3 6.5 ×10 −4 

12 0.0001 0.1 0.1 6.2 ×10 −4 2.1 ×10 −3 1.3 ×10 −6 1.3 ×10 −8 100,000 1.10 ×10 8 4.93 ×10 4 0.0050 
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Fig. 2. Evolution of the norm ||R 1 || in the case x 01 = 0.0001 cm. 
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ended in this way to the entire nonlinear system. The evolution of the state x 5 sign is
onitored to connect in simulation one or the other component of the switching system. 
Synoptic graphs in Figs. 3 –5 give another perspective on the stability of system ( 8 ), com-

ared to the drastic conditions in Table 1 . Table 1 shows the result of a mathematical demon-
tration, while Figs. 3 –5 present the result of a numerical experiment. 

As outlined above, the problem is that those asymptotic stability conditions in Theorem 2
re extremely conservative, which is almost a rule with the sufficient conditions, generally
peaking. Therefore, in Fig. 3 it can be seen that the mathematical model ( 8 ) of the EHS,
ithout delay and with a LQR control law, denotes an accentuated stability, practically

ndifferent to the magnitude of the perturbation (in the graphs in Figs. 3 –5 the perturbations
re substantial, ˆ x 1 , 1 = 0. 5 cm or ˆ x 1 , 2 = −0. 5 cm ), and the distinction between linear and
onlinear is insignificant. Fig. 4 highlights what can happen in the case of actuator delay,
ithout predictive control. Moreover, a nearly 0.1 s threshold value of the delay is identified.
or h = 0.096 s, we have a pole in discrete time at the stability limit, z = 0.99995. For h 

∗

 0.1 s, we have an unstable pole z = 1.0002346. Finally, the synthesis methodology of the
ontrol law, as well as the numerical simulation procedure, are validated by the graphs in
ig. 5 . It is noteworthy that, if we overlook the portion of the graphs corresponding to the
.1 s delay, the graphs in Figs. 3 and 5 are very close to each other. It is as if the system
ithout delay is practically the same as the delayed system compensated by the control law
f predictive feedback. This happen despite of the control law concept, essentially different
rom [56] . 

A last point of interest for numerical applications could be the asymptotic stability
ssessment of the homogeneous linear state delay system ˙ x (t ) = A i x (t ) + A di x ( t − h ) , A di :
 B c K i e A i h (∗) . Stability of such an equation is ensured if all zeros of the transcendental

haracteristic equation det ( sI − A − A d e −Ish ) = 0 fulfil the Re s > 0 inequality (see, e.g., [2] ),
n which I is the identity matrix. To avoid tedious calculations for analysing the solutions of
his transcendent equation, it is appropriate to use a result from [76] that says the asymptotic
tability of the equation (∗) occurs if there exists of least one solution for the nonlinear
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Fig. 3. History of system variables, the case of the EHS without delay. 

Table 2 
The existence of the solution of the transcendental equation e ( A 1 + P 1 (0) ) h P 1 (0) = A d1 . 

# h solution checking conclusion 

1 0.005 1 . 73 × 10 −10 there is a solution 
2 0.01 2. 18 × 10 −9 there is a solution 
3 0.015 1 . 99 × 10 −10 there is a solution 
4 0.02 7 . 52 there is no solution 
5 0.09 2. 74 × 10 4 there is no solution 

 

 

 

 

 

 

 

 

algebraic matrix equation e ( A 1 + P 1 (0) ) h P 1 (0) = A d1 . A simple numerical investigation of this 
equation is done by using Matlab fsolve subroutine and is summarized in Table 2 . This
shows the method efficiency as compared to more laborious approaches in [77 , 78] in which
is used the Lambert function. 

The result in the Table says something about the risk of loss of the stability for the system
˙ x (t ) = A i x (t ) − A di x ( t − h ) . Unfortunately, it is all about sufficient stability conditions, which
can also be very conservative. However, we can take advantage of the results from Table 2 in
the sense that the stability threshold can climb up to h = 0.1 s, if we take into account that in
the analysed equation ( ∗) lacks the compensating term B c K i 

∫ 0 
−h e 

−A i s B c u i ( t + s − h ) ds . 
5. Concluding remarks 

The novelty of the present study consists in addressing and solving a problem of equi-
librium stability for a nonlinear structural switching system with actuator delay. A first re-
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Fig. 4. History of variables for the switching system with simple LQR feedback. 
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ult of the paper is described by Theorems 2 and 3 which give sufficient conditions for
symptotic stability of this equilibrium. Unfortunately, the stability conditions in Theorem 2
ave proved to be extremely conservative, which is a rule with conditions that are only
ufficient, but not necessary. A second result refers to numerical applications on such a con-
ecrated system, the mathematical model of the EHS. In this way, the present paper contin-
es some works published in the field of hydraulic servomechanisms analysis and synthesis
28 –32 , 44 , 46 –50 , 74 , 79–82] . Note that it is for the first time, to the best of our knowledge,
hen the study of the actuator delay is corroborated with that of structural switching in

he EHS mathematical model. This mathematical models ( 11 ) and ( 12 ) has on the one hand
n improvement with respect to the model in [31] and on the other hand introduces the
elay on the control variable. The improvement, otherwise realistic [55] , refers to taking
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Fig. 5. History of variables for switching system with predictive feedback control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the advantage of a certain “flexibility” of mathematical models [47 , 48 , 81] by introducing
the leakages k l � = 0. Otherwise, matrices A i would each have two null eigenvalues and, in
this context, in [31] it was necessary to resort to the apparatus Lyapunov–Malkin of critical
cases of stability. A next study could address all three aspects simultaneously: critical case
of stability, structural switching, and actuator delay. Also, the question of conservativeness 
reducing remains a target in a next approach to the stability. The main result of numeri-
cal simulations is the maximum allowable delay value h 

∗ = 0. 1 s , beyond which stability is
lost. In the literature of the field we have no other term of comparison, than recent work
[82] , in which the same value is confirmed by specific simulations performed by model
discretization. 

Noting the competition with other types of actuators – electromechanical actuators, hy- 
drostatic actuators, piezo actuators (see the so-called “green aircraft” and details in [83] ) –,
we believe that the EHSs will still be for many years the right choice in many application
domains. 

The EHS is in fact a position tracking system, but the EHS as a stabilizing system can
be viewed as a special case of the tracking system [47] . An eloquent example of practi-
cal interest for EHS as a stabilizing system is the well -known problem of altitude-hold
autopilot synthesis, involving an EHS, where the target is the maintenance of the desired
altitude of the aircraft, thus allowing the pilot to perform other more important tasks. An
earlier approach of the closely related EHS equilibria stability problem has been proposed in
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he framework of the absolute stability theory, as stated by Aizerman, Lurie, Lefschetz and
opov [84] . 
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