

Small-scale turbulence in the terrestrial magnetosheath

E. Yordanova¹, H. Breuillard¹, A. Vaivads¹, Z. Vörös ², and G. Consolini ³

(1) Swedish Institute for Space Physics, Uppsala, Sweden; eya@irfu.se

(2) OEAW-Space Research Institute, Graz, Austria

(3) INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma, Italy

- Introduction (Magnetosheath vs Solar Wind)
- Data analysis tools
- Turbulence evolution
- Conclusions

Eastwood et al., SSR, 2005

Solar wind – supersonic and superalfvén outflow of *e*- and *p*+

Foreshock – reflected by the bow shock electrons and ions; ULF waves; wave-particle interactions

Magnetosheath – heated and slowed down solar wind plasma

Sub-sonic sun-alfvénic flow

Higher:

mean field density temperature higher beta plasma

Sources of free energy:

Temperature anisotropy: $T_{i\perp} > T_{i\parallel}$ (Plasma instabilities and low f waves)

Bowshock and magnetopause

[Omidi et al., JGR, 2014]

2.5-D EM hybrid simulations – MA=3 MF cone angle=35°

Rich variety of low-frequency waves in the magnetosheath:

Alfvén/ion-cyclotron : transverse mode, k||B

■ Mirror-modes : compressible slow mode, **k**⊥**B**

[Bruno and Carbone, Living Review, 2014]

[[]Yordanova et al., EPL, 2015]

Solar wind PSD: 3 regimes – energy

injection, inertial and dissipation

Magnetosheath PSD: Energy injection at proton scale; no clear inertial range **1.** Angle ϑ_{Bn} - (B_{upstream}, n_{BS}); **2.** System size and **3.** Mach number

Quasi-perpendicular Configuration¹

- Stable steep ('ramp') short transition upstream/downstream region
- Small fluctuations in plasma parameters
- Particle heating
- Characteristic scale gyro-scale

Quasi-parallel Configuration²

- Broad (1-2 Re) turbulent transition upstream/downstream region
- Large fluctuations in all parameters
- Wave/particle interactions
- Current sheets, vortices and islands

¹ When the angle between the bow shock normal and the interplanetary magnetic field is larger than 45° ² When the angle is smaller than 45°

[Omidi et al., JGR, 2014]

Magnetosheath filamentary (MF: anti-correlated field aligned density and temperature) structures form over a wide range of solar wind Mach numbers and IMF cone angles

Due to the presence of localized regions of enhanced ion temperature at and upstream of the quasi-parallel bow shock

Part I. Turbulence evolution

1. $Q_{||}$ behind BS; $\vartheta_{Bn} \le 20^{\circ}$

2. $Q_{||}$ MSH proper; $\vartheta_{Bn} > 20^{\circ}$

3. Q_{\perp} close to MP ; ϑ_{Bn} :(60°-110°)

Date	Time	interval	<t<sub>1/T₁></t<sub>	δ(T /T)		δΒ	<v></v>	δV	<n<sub>p></n<sub>	δΝ _ρ
20020327	09:40	10:40	1.04	0.25	14.1	6	270.8	41.8	12.3	4.2
20020327	11:16	11:45	1.24	0.06	10.2	2.2	239	9.2	12.3	1
20020327	12:10	13:40	1.27	0.11	13.4	4.3	254.7	13.4	12.1	1.3

Time interval		<t<sub>II></t<sub>	δΤ _{ΙΙ}	<t<sub>I></t<sub>	δT	ρ _p	f	λ	f _λ	<v_></v_>	β
09:40	10:40	170	57.5	171	50	131.1	0.329	65.6	0.657	80.4	4.2
11:16	11:45	179.1	13	222.2	15.1	199	0.191	65.7	0.579	58.5	9.7
12:10	13:40	177	36.9	222.5	22.1	152.2	0.266	66.2	0.612	77	5.6

- The variability of the parameters decreases in the MSH proper and increases again towards the MP
- The Tanisotropy increases towards the MP

PSD

Power spectral density by Welch method

Kurtosis (Flatness)

Measure of intermittency (inhomogeneous fluctuations of a parameter, i.e. magnetic field). It results in increasing non-Gaussian shape of PDF with scale decrease:

$$K(\tau_{i}) = \frac{\left\langle X_{\tau_{i}}(t)^{4} \right\rangle_{t}}{\left\langle X_{\tau_{i}}(t)^{2} \right\rangle_{t}}$$

 $\Delta X_{\tau_i} = X\left(t + \tau_i\right) - X(t)$

representing the characteristic fluctuations of X at a scale τ):

Temperature anisotropy

Source for free energy for plasma instabilities. The stability of the system depends on plasma parameters, mainly temperature anisotropy and proton plasma beta:

 T_{\parallel}

Magnetic compressibility

Indicates the relative energy in the fluctuations parallel and perpendicular to the mean magnetic field:

$$C_{\parallel} = \frac{\delta B_{\parallel}^2}{\delta B_{\parallel}^2 + \delta B_{\perp}^2}$$

[Bale et al., 2009, Hellinger et al., 2006]

PSD - same in both BS configurations as observed before [Fuselier et al., 1994]

Intermittency – Inhomogeneous (bursty) fluctuations in the observed quantity in space and/or time

- Intermittency increases away from the BS
- Intermittency higher in quasi-perpendicular magnetosheath

Compressibility in $(T_{\perp} / T_{\parallel}, \beta_{\parallel})$ plane

- $\mathbf{Q}_{\parallel}^{1}$: broad range of $(T_{\perp} / T_{\parallel}, \beta_{\parallel})$ plasma is unstable (fluctuations exceed all thresholds);
- Q²_{||}: concentration along the mirror and proton cyclotron threshold;
- Q_⊥: two populations with different compressibility concentrated around the proton-cyclotron and mirror thresholds

Conclusion

- Intermittency increases from the bow shock to the magnetopause
- Magnetic compressibility also increases away from the bow shock
- Temperature anisotropy also increase with the distance from BS, giving rise to plasma instabilities and waves