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Solar wind large scale structure

Ulysses First Orbit
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Solar minimum:

= fast steady wind at
high latitudes

= Fast and slow
streams in the
ecliptic.
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Most of our knowledge about solar wind plasma and magnetic field in
the inner heliosphere is due to Helios 1-2 s/c developed by the Federal
Republic of Germany (FRG) in a cooperative program with NASA

» Two spacecraft, launched in
1974(10 Dec) & 1976(15 Jan)

» ecliptic orbit, perihelium @
0.29AU

» Plasma measurements:
protons(+alphas) and electrons

» No composition

» Slow plasma sampling, VDF in
40.5 sec

» Low phase space resolution

» NO imaging

Programme realized in only 5 years!
1969: contract between FRG and NASA approved
10 December 1974:  Helios 1 launched

R. Bruno, International Workshop and School
Mamaia, Romania 6-13 September 2015




A sample of
Interplanetary data |
observed in the ecliptic ool
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A sample of
Interplanetary data
observed in the ecliptic

200 : -
/2046/ 80
Days of 1976

100

—

&

o : :
— 4 i T |
= 3
F, 2
e 1E
oE M:

f
|

|
f
|

300 M L
& 200 ’ T e v i ' r
AL " '1i'uhlll|“.|"| "'"-‘“lu..h L
103 | 1 Lu 1 | | 1
I T T T T
50

mllllllll II|IIIIIII|I I|IIII IIII|

13

-“]— — '-'
> :
B T i

T4 i+
Day of Year 1978, heliccentric distance 0.5 AU




A sample of
Interplanetary data

O

mag field [B ]
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As we will see in the
following,

the Solar Wind is a
turbulent medium




Turbulence is an old problem...
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Turbulence is an old problem...

Arno river in Florence

Study by Leonardo da Vinci
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“Turbulence still remains the last major unsolved
problem in classical physics.” Feynman et al. (1977)



TURBULENCE

The study of the chaotic behavior
of a fluid flow in space and time

R. Bruno, International Workshop and School
Mamaia, Romania 6-13 September 2015
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TURBULENCE

The legacy of
Kolmogorov, Andrei
Nikolaevich (1903-1987)

The study of the chaotic behavior
of a fluid flow in space and time

R. Bruno, International Workshop and School
Mamaia, Romania 6-13 September 2015 n



The first feature we notice in interplanetary fluctuations is an

approximate self-similarity when we look at different scales

Magnetic Field Intensity [nT]
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amount of datapoints
O Similar profiles
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self-similarity implies power-laws

The field v(4) is said to be “invariant for scale
transformation” A =2rA or “self-similar” if there exists

a parameter .(r) such that: OTaNesco DToc

V(4) =p(r)v(ri)

The solution of this relation is a power law: v(1)=CA"
where h=-log,u(r)

R. Bruno, International Workshop and School
Mamaia, Romania 6-13 September 2015 13



As a matter of fact, interplanetary fluctuations do show
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The first evidence of the
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solar wind fluctuations
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As a matter of fact, interplanetary fluctuations do show
power laws

Scales of fractions of AUs

power density [f/Hz]
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frequency [Hz]

A typical IMF power spectrum in
interplanetary space at 1 AU

[Low frequency from Bruno et al., 1985, high freq. tail from Leamon et al,
1999]

R. Bruno, International Workshop and School

Mamaia, Romania 6-13 September 2015 15



Spectral index of turbulent phenomena is universal

Scales of fractions of AUs Scales of cms
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The phenomenology at the basis of these observations
follows the energy cascade a la Richardson in the
hypothesis of homogeneous and isotropic turbulence

integral
scales & € = energy transfer rate
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Richardson cascade forr=1/2 3 E
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homogeneous=statistically invariant under space translation
isotropic=statistically invariant under simultaneous rotation of 3V and f
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K41 theory and k3 scaling (A.N. Kolmogorov,1941)
based on dimensional analysis

/4

Vo, =V, o

E, _ Vi _VV,
t, /

1/3 pl1/3
V,~¢g, !

If € doesn’t depend on scale

g, >e=>V, ~ /"

eddy turnover time
(generation of new scales)

-y

Scaling of power density spectrum

W(k) ~ &v2/k
k~1/¢

dv? ~ 0¢
W(K) ~ k k3
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Turbulence is the result of nonlinear dynamics and is
described by the NS eq,.

ou

—
ot

(G

pA

0/ Incompressible
Navier-Stokes equation

V)i =-VP+ W2

non-linear

u — velocity field
P — pressure
v — kinematic viscosity

dissipative

R

°  dissipative v

_non-linear _ vL

for large R, — non-linear regime

R. Bruno, International Workshop and School
Mamaia, Romania 6-13 September 2015 19



power density [#/Hz]

Characteristic scales in turbulence
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Taylor scale

Kolmogorov scale

typical IMF power spectrum in at 1 AU

[Low frequency from Bruno et al., 1985, high freq. tail from Leamon et al, 1999]

eff
R, =

A

2

Correlative Scale/Integral
Scale:

e the largest separation distance over
which eddies are still correlated. i.e.
the largest turb. eddy size.

Taylor scale:

e The scale size at which viscous
dissipation begins to affect the eddies.

e Several times larger than Kolmogorov
scale

10 e it marks the transition from the inertial
range to the dissipation range.

Kolmogorov scale:

e The scale size that characterizes the
smallest dissipation-scale eddies

(Batchelor, 1970)
20



The Taylor Scale and Correlative Scale can be obtained from the two

point correlation function

Taylor scale:

e Radius of curvature of the
Correlation function at the
origin.

Correlative/Integral scale:

e Scale at which turbulent
fluctuation are no longer
correlated.

R(r) =<V (x+r)V(x)> /< V(x)°>

1.0

Correlation function R(r)

o
=

Main features of the
correlation function R(r)

/ E f(0)=1
Taylor\Scale : f'(0)=0
: f ”(O) _ —1/ﬂ,$
: f(0) >0

Arbitrary

Correlative Scale

(adapted from Weygand et al., 2007)

R. Bruno, International Workshop and School

Mamaia, Romania 6-13 September 2015
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We can determine:

the Taylor Scale from Taylor expansion of the two-point correlation

function for r—o:

r.2

22.°

R(r)~1-

+...

(Tennekes, and Lumley, 1972)

where r is the spacecraft separation and R(r) is the two-point correlation

function.

the Correlative Scale from:

R(I’) — RO eXp(— I / ZC ) (Batchelor, 1970)

the effective magnetic Reynolds number from:

Ac

eff
RS =| —

A

2

(Batchelor, 1970)
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O First experimental estimate of the effective Reynolds number in the solar wind (previous
estimates obtained only from single spacecraft observations using theTaylor hypothesis)

O First evaluation the two-point correlation functions using simultaneous measurements from Wind,
ACE, Geotail, IMP8 and Cluster spacecraft (Matthaeus et al., 2005).

Range of Spacecraft Separations

Cory. Coefl.
o=

10 10 10 10 10 10 10
Separations (km)

(Matthaeus et al., 2005, Weygand et al., 2007)

23



Experimental evaluation of A. and A; in the solar wind at 1 AU
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high Reynolds number — turbulent fluid — non-linear interactions expected
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Solar wind turbulence: first experimental evidence for the existence
of a spectral radial evolution

FAST WIND SLOW WIND

. trace of magnetic field spectral matrix . trace of magnetic field spectral matrix
10 | 10 : ,

power density [nT*/Hz]

wr:ielios 2
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frequency [HZ] [Bruno and Carbone, 2013] freq s/ [HZ]
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Solar wind turbulence: first experimental evidence for the existence
of a spectral radial evolution
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NS equations for the hydromagnetic case

a—ﬁ+(u-v)6=—vp+vvzu
ot

0| [Incompressible
Navier-Stokes equation
u — velocity field

P — pressure

non-linear dissipative v = kinematic viscosity
Hydromagnetic flows: same
A v+ 4 “structure” of NS equations
Z (77 V)t =-vP+ SEvr
- ~ Elsasser variables
- =Uzxb=U0xB/\4np -+ -

<B>
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NS equations for the hydromagnetic case

ou .\ _ '
iy (u -V)u — _VP + W2 : 0| Incompressible |
ot Navier-Stokes equation

u — velocity field
P — pressure
v — kinematic viscosity

non-linear dissipative

Hydromagnetic flows: same
.| “structure” of NS equations

Nonlinear interactions and the consequent energy
cascade need both Z* and Z-

28




Definition of the Elsasser variables

Sh

57 =V
dnp | ———

By S5 _ 50 Sh
'L(\ Z =0V-+ '—475,0

R. Bruno, International Workshop and School
Mamaia, Romania 6-13 September 2015

sign[-E - I§O]

outward
propagating
wave

inward
propagating
wave
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Definition of the Elsasser variables

Sh

57 =V
dnp | ———

B, o Sb
'L(\ 07" =0V — \/@

R. Bruno, International Workshop and School
Mamaia, Romania 6-13 September 2015

sign[-E - I§O]

outward
propagating
wave

inward
propagating
wave
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Solar wind turbulence is studied by means of the
iIdeal MHD invariants (E, H_, H,,)



Statistical approach to turbulence
The statistical description of MHD turbulence relies on the evaluation
of the three quadratic invariants of the ideal system (no dissipation)

1) total energy per unit density B — l< 2 + b2> N b

where b is in Alfvén units

t 2 Jamp
2) cross helicity a7
(v
3) magnetic helicity H = <§ : B> where bis cEfineivia
b=Vxa

In the following we will use a combination of these invariants to describe the

phenomenology of turbulent fluctuations in the solar wind and to understand

their nature

32



Sometimes it is more convenient to use the normalized

expressions for cross-helicity and magnetic helicity

_2H (k)

"M e

o KHL0

E,,(K)

o. and o, can vary between +1 and -1

(@)
(o) (o)

4 the sign of o_ indicates correlation or anticorrelation

between év and &b

4 the sign of o, indicates left or right hand polarization



The 2 quadratic invariants E, and H_ can be expressed in terms
of the Elsdsser variables

Fields:

Second order moments:

e* = % < (zi)2 > e* and e” energy
% 1 2
e = > <V > Kinetic energy
b1 o .
e'=—<b"> Magnetic energy
2
e’ = 1 <V-b> Cross-helicity
2

34



The 2 quadratic invariants E, and H_ can be expressed in terms
of the Elsdsser variables

Fields:

Normalized parameters:

2e° e’ —e
° T o'4e® et i1e | Normalized cross-helicity [ <o <
288 e'-¢ ~1<0, <1
9 T ot 1o e'+e’| Normalized residual energy
for an Alfvén wave:
ry=e"/eB=1
e’ .
r ——| Alfvén ratio oo=(et-e)/(et+er) =+1
A eb
or=(eV-eB)/(eV+eB)=0




observations in the ecliptic

R. Bruno, International Workshop and School
Mamaia, Romania 6-13 September 2015
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An overview on the main features of solar wind fluctuations
at MHD scales in fast and slow wind and their evolution
during radial expansion

O Fast and slow wind features should never be averaged together.

«Asking for the average solar wind might appear as silly as asking for
the taste af an average drink. What is the average between wine and
beer? Obviously a mere mixing — and averaging means mixing — does
not lead to a meaningful result.

Better taste and judge separately and then compare, if you wish.»

[Rainer Schwenn, Solar Wind 5, 1982]

R. Bruno, International Workshop and School
Mamaia, Romania 6-13 September 2015




Wind Speed

Differences in the spectral signature of fast and slow wind

Helios 2 @ 0.29 AU
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The spectral break in the fast wind spectrum suggests shorter correlation lengths
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Wind Speed

Differences also in the variance anisotropy of the fluctuations
wrt Parker’s spiral

Helios 2 @ 0.29 AU
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Differences also in the amplitude of directional fluctuations of velocity

and magnetic field vectors
Angular histograms [scale 81 s]

Helios 2 @ 0.29 AU ,, fastwind, R=0.3AU
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Wind Speed

Differences also in the spatial distribution of the fluctuations

1.0
Helios 2 @ 0.29 AU
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Wind Speed

Differences in the orientation of the minimum variance direction

Helios 2 @ 0.29 AU

Helios 2, 45avgs
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Differences in the level of normalized crosshelicity
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Differences in the level of magnetic and kinetic energy content

Helios 2 @ 0.29 AU
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Differences in Intermittency along the velocity profile

\

[ a measure of the non-Gaussianity of the fluctuations |

Helios 2 @ 0.9 AU
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[Bruno et al., 2007]

Intermittency strongly depends
on the location within the stream

F, = S(S?)
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Differences in Intermittency along the velocity profile

\

[ a measure of the non-Gaussianity of the fluctuations |

[Bruno et al., 2007]

Helios 2 @ 0.9 AU
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Differences in Intermittency along the velocity profile

\

[ a measure of the non-Gaussianity of the fluctuations |

Helios 2 @ 0.9 AU
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Intermittency strongly depends
on the location within the stream
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Differences in the Alfvénic character of the fluctuations in fast and slow

wind b
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Differences in the 0B-oV alignment

Helios 2 @ 0.29 AU
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Alfvénic correlations: fast vs slow wind
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All these features evolve with the radial
distance from the Sun

[Fast wind tends to resemble slow wind as
the distance increase]

53



For increasing distance:

] e* decreases towards e-

O spectral slope evolves
towards -5/3

J No much radial
evolution

U spectral slopes
always close to -5/3

e*(f) (km?s2Hz™)
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10°

e';e [km’ s’ Hz']

[Marsch and Tu, 1990]
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Since e*—e", 0B-0V alignment decreases during expansion

Helios 2 observations
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 Best alignment for younger
turbulence (0.3AU)

O No alignment for slow wind, as
expected from fully developed
turbulence (|0Z*|=|0Z|)
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FAST WIND

. max

Radial evolution of MHD turbulence
in terms of 6y and 6. (scale of 1hr)

Alfvénic population

e —-e  2<v-b>
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¢ et4e e+
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FAST WIND

Radial evolution of MHD turbulence

Alfvénic population

in terms of 6y and 6. (scale of 1hr)

e —-e  2<v-b>
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¢ et4e e+
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RV 4ef

ol +of <1

57




FAST WIND

Radial evolution of MHD turbulence
in terms of 6y and 6. (scale of 1hr)

e'—e  2<v-b>
O-C: + - = Vv b
e"+e e’ +e
e’ —e’
Alfvénic population |0z =——
e’ +e
o¢+oi <1

A new population appears,
characterized by magnetic
energy excess and low
Alfvénicity

(Bruno et al., 2007) 58



FAST WIND

Radial evolution of MHD turbulence
in terms of 6y and 6. (scale of 1hr)

e'—e  2<v-b>
O-C: + - = Vv b
e"+e e’ +e
e’ —e’
Alfvénic population |0z =——
e’ +e
o¢+oi <1

this might be a result of
turbulence evolution or the
signature of underlying
advected structure

(Bruno et al., 2007) 59



FAST WIND | SLOW WIND Helios 2 observations
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oSUN Several contributions suggested that
incompressible turbulence is not purely slab
(Alfvénic)

(Thieme et al., 1988, 1989; Tu et al., 1989, 1997; Tu and Marsch, 1990, 1993;
Bieber and Matthaeus, 1996; Crooker et al., 1996; Bruno et al., 2001, 2003,

2004; Chang and Wu, 2002; Chang, 2003; Chang et al., 2004; Tu and Marsch,
1992, Chang et al., 2002, Borovsky, 2006, 2008, 2009, Li, 2007, 2008)

(onvected
structures

Alfven wave
trains

2D+SLAB

[Tu and Marsch, 1992] i
[Bieber et al., 1996]

0.04 21 T
. . I
0.03 2 .
- -) -
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o Y .
| =
-0.01 |
| -
002 ! -
~
e
-0.03 ®
e |
I i 004 :
a bs 2x [t} bs
X X

2n

[Bruno et al., 2001]

(Chang et al., 2002)

Figure 2.2 2D MHD simulation of coherent structures (lefl panel) and current sheets (right panel) generated by
initially randomly distributed current filaments afier an elapsed time of ¢ =300 units. (For reference, the sound
wave and Alfvén wave traveling times through a distance of 27 are approximately 4.4 and 60, respectively.)
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PADE N WAY:]

k// and kL are the ingredients of Slab and 2D turbulence
model

N X
By=backgroundfield
b=fluctuatingfield
> ~H{otk7) W O Y e
= e =k ok ik ok
S A OTACY R :
y SLAB:  b=15,(2).5,(2)0 =>—=5=0=>k,=k,=0=>k=(o,o,l;)=>kﬂ
b=(b,(x, ). (nyxo)ﬁ—iqaiq—-mk .k, 0> k,
3108 i o 310 MHD Structures ]
il Alfven Waves with k || B 3 S5l with-l:J.-B.
guo‘ guns
L S = — = m - (AT
‘--1 108 < i 110°
2105} 210°
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[Bieber et al., 1996]

O Axisimmetry assumed



Dominance of k, or k,, has implications in the correlation lengths

anisotropy

observations at 1AU [ISEE3 data]

JY YRS U Numerical model

ry [km]

Figure 26: Contour plot of the 2D correlation function of interplanetary magnetic field Auctuations
as a function of parallel and perpendicular distance with respect to the mean magnetic field. The
separation n vy and r; is in units of 10'° em (adopted from Matthasus et of, 1900, @) 1990
American Geophysical Union, reproduced by permission of American Geophysical Union).

R. Bruno, International Workshop and School
Mamaia, Romania 6-13 September 2015
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Shebalin et al., (1983) proposed the anisotropy development due to 3-
wave resonant interaction

la]

» 2D incompressible MHD simulation

wo - B,zB,8, 5 » |Initial isotropic spectrum
B » magnetic field:
> B,=B.e, mean field

» B=(B,,B,0) turbulent field
» non-zero couplings between right and left travelling waves

L | k., o(k,) = k)

Condition for 3-wave resonant interaction:
+o(k;)=m(k,)-o(k,)

Since ®(k)=k-B, possible solutions: w(k,)=0 or
ky O)(kz)=0
= either k, ork, L B,

Result: excitation of a wave with larger k, but never
with larger k,, . Turbulence evolves towards a
dominance of k;




Shebalin et al., (1983) proposed the anisotropy development due to 3-
wave resonant interaction

» 2D incompressible MHD simulation
» |Initial isotropic spectrum
» magnetic field:
> B,=B.e, mean field
» B=(B,,B,0) turbulent field
» non-zero couplings between right and left travelling waves

VWAL WA

L T T i kl’ O“)(kl) ‘ _ k2' _O‘)(kZ)
“*" Condition for 3-wave resonant interaction:
o ky=k,+k,
- +o(k;)=m(k,)-o(k,)
j Since ®(k)=k-B, possible solutions: w(k,)=0 or
o(k,)=0

= either k, ork, L B,

Result: excitation of a wave with larger k, but never
with larger k,, . Turbulence evolves towards a
dominance of k;




Goldreich and Sridhar [1995] (GS95) proposed a new mechanism characterized by
the so called “Critical Balance” conjecture

Alfvénic turbulence reaches a state for which there is a balance between non-linear
time and Alfvén time:

T R T, : kL/k,, ~ (le)1/3 [“L” is the initial

scale of excitation]

O Parallel and perpendicular spatial scales of eddies are correlated

1 As the cascade proceeds to larger k , the eddies become more elongated
along B

1

V2 k L1/3
3D spectrum Pk, k) klo/gALl/g f( > ]

Q If only slab and 2D turbulence PL(f ;‘95 _ 900) o f 53
are present — P,,(f ;QB _ O°) e
[Horbury et al., 2008]

P, (f) <P.(f)

R. Bruno, International Workshop and School 66
Mamaia, Romania 6-13 September 2015



P, (f;6; =90°) o83
P,(f;6; =0°) f°
P,(f;) <P, (f;)

O; is the angle between
sampling direction and
mean field direction

The possibility to observe a different scaling Introduces
the problem of defining what the “mean field” is

R. Bruno, International Workshop and School

67

Mamaia, Romania 6-13 September 2015



B,/|BB|

About the problem of defining the “mean field”

Fluctuations at a given scale are sensitive to the local magnetic field, but the
definition of “local” varies with the spatial scales of interest.

scale 30min
1,0 ‘
0,38
0,5 019
@D (00
0,0 ) 0,
BN
0,5 0% |
4,9 1,0 \ :’jf P o
-0,5 > 0,5 = S - ==
& 0,0 0.9e\ S = et e, on, S
*//8@/ 05 05 %}\% = - = L= NN
R "0,)9
[Bruno et al., 2001] 10 <0

About 3 hrs of 6s averages of Helios 2, fast
wind at 0.9AU

R. Bruno, International Workshop and School

Mamaia, Romania 6-13 September 2015 o8



Anisotropy test by Bieber et al. [1996] in the solar wind

Data rotated into the mean field ref.sys.

Pyy = PL [perpendicular spectrum]

Py,x =Py Ilquasiparallel spectrum]

PJ_ [fluctuations L to the sampling direction]

[fluctuations with one component // to the sampling direction]

Puy

mean field ref.sys.

2rf \ 7
FPi(f) = Cs (Vw 50315') JC, and C, are the amplitude of slab
2 onf \'°7 and 2D components
t G - Qg is th tral ind d
+q) \Vy siny g is the spectral index around a
certain frequency within inertial range
orf \'79 2D gives a different contribution to P

2 o9xf \' 9
+ G (1+q) (Vw sin‘qﬁ)

+rom tne Heliosphere into the Sun
Physikzentrum Bad Honnef, Germany 69
January 31 — February 3, 2012



Helios data for the anisotropy test by Bieber et al. [1996]

5 g1 —— [ fast and slow(dominating) wind mixed
together

Ratio of perpendicular to parallel
power fitted by a composite geometry
with 74% 2D and 26% slab

UDataset: Helios 1&2 between 0.3 and
[ 1 1AU, 454 spectra of 34 min each taken
050 . . .« ... ... .. .7 during SEP events
0 20 40 60 80
Field Angle (deg)

» Dramatically different results are
expected selecting only Alfvénic
high velocity streams (time res. in
Helios data not sufficient)

a PL [fluctuations L to the sampling direction]
a P(//) [fluctuations quasi // to the sampling direction]

R. Bruno, International Workshop and School

Mamaia, Romania 6-13 September 2015 70



Dasso et al., (2005): Ecliptic turbulence with Ulysses data

o SLOW WIND:
mainly 2D turbulence
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Fig. 1.—Level contours for Ry(r). Left, slow solar wind (T, < 400 km s™'); right, fast solar wind (I, = 500 km s7"). (See text.) Levels are at 1200, 1400,

1600, and 1800 km® &~

TABLE 2
ESTIMATE OF (Af™/AT™)*: SQUARED RATIO
OF CORRELATION SCALES

1 Fluctuations decorrelate faster in
the perpendicular direction in the slow

Wind Ry, R, Ry, R, R, ind whil h . . h
— TR — wind while the opposite occurs in the
Fast....... 05 04 05 08 04 fast wind

R. Bruno, International Workshop and School 71

Mamaia, Romania 6-13 September 2015



Which mechanism does generate turbulence
In the ecliptic?

R. Bruno, International Workshop and School
Mamaia, Romania 6-13 September 2015
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Different origin for Z* and Z modes in interplanetary space

— g,

Outside the
Alfvén radius we
need Z- modes
In order to have

5 7 > ’
(Z7-v)Z* =0 - _,
Need for a 3 ‘\/\/\/ P
mechanisms s | 4
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locally Z- modes R _—/

: 7
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\
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R. Bruno, International Workshop and School
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Radial evolution of 6 In the ecliptic

Normalized cross-helicity
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[Adopted from Matthaeus et al., 2004]

R. Bruno, International Workshop and School
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Radial evolution of o in the ecliptic

Normalized cross-helicity
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(Dobrowolny et al., 1980)

velocity shear = || decreases

(Coleman, 1968)

*mixing fast and slow wind




Dynamic alignment

(Dobrowolny et al., 1980)

This model was stimulated by apparently contradictory observations
recorded close to the sun by Helios:

absence of non-
linear
interactions

1. observation of 6.~ 1 means
correlations of only one type (0Z*)

2. turbulent spectrum clearly observed presence of non-

linear interactions

R. Bruno, International Workshop and School
Mamaia, Romania 6-13 September 2015 76




Dynamic alignment
(Dobrowolny et al., 1980)

1
*
Interactions between Alfvénic fluctuations are local Z-/ ~ T
! 57
in k-space
We can define 2 different time-scales for these /
interactions t; ~
¢,

The Alfvén effect increases = 'C

. . . Ti A tir J A
the non-linear interaction / j l"_ — 772
time A (5 0 )
We can define an . (6Z)° _

+ / -1 ,~-1 +\2 F\~2
energy transfer rate Hf ~ n ~ L CA (5Zz ) (5Z€ )
0

The energy transfer rate is the same for dZ* and dZ-

An initial unbalance between dZ* and dZ-, as observed close to the
Sun, would end up in the disappearance of the minority modes dZ

towards a total alignment between dB and dV as the wind expands
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Radial evolution of o in the ecliptic

Normalized cross-helicity
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Typical velocity shear region
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Turbulence generation in the

mechanism
(Coleman 1968)

*Solar wind turbulence may be
locally generated by non-linear
MHD processes at velocity-shear
layers.

*Magnetic field reversals speed up
the spectral evolution.

The 6 lowest
Fourier modes of
B and V define
the shear profile

ecliptic: velocity shear
The z*

10°

spectrum
evolves 10°
slowly o¢E INTIAL
P sSPEcTUM
10°®
10°8
10°10
10°

1072

This process might have a
relevant role in driving turbulence
evolution in low-latitude solar
wind, where a fast-slow stream
structure and reversals of
magnetic polarity are common
features.

PP

A z~ spectrum is

qUiCkly ——*A—"-—JAJ—'\—L—A—LL] il I (Mo .3 .
10 10°

developed at X

hlgh k 2D Incompressible simulations by Roberts et al.,

Phys. Rev. Lett., 67, 3741, 1991
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In-situ observations at high latitude

R. Bruno, International Workshop and School
Mamaia, Romania 6-13 September 2015
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Polar wind features

At LOW activity the polar wind
fills a large fraction of the
heliosphere.

In contrast, polar wind almost
disappears at HIGH activity.

The polar wind, a relatively
homogeneous environment,
offers the opportunity of
studying how the Alfvénic
turbulence evolves under almost
undisturbed conditions.

ULYSSES FAST-LATITUDE SCANS
NEARING SOLAR MINIMUM AROUND SOLAR MAXIMUM

711995 10/2001

sooR W

9/1994 Imward IM] 11/2000

McComas et al., GRL, 29 (9), 2002
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Polar wind: spectral evolution

Power spectra of z* and The development of a turbulent cascade
Z aé 2|ano: 4.’*(;4 In polar with increasing distance moves the
wind clearly indicate a breakpoint between the f-1 and f -53 regimes

spectral evolution
gualitatively similar to
that observed in ecliptic 7+ f-1
wind.

to larger scales.

polar wind / z=\_ polar wind/ s
2 AU AN 4AU

Ulysses at 2 AU DOY 2294292, 19 lysses™at 4 AU DOY 299-312, 1993
Y‘IIIITII' T "‘lll‘! T KIVII! % \1 Iill!\f r lYlllli T TIIJII! T T TITT

TTTT\'Y% T T j

[ L L LR LT P PNy

Trace P{z+) B
.| = - Trace P27} -1 —---- Trace P2 -------------
1L i uni 1 i lJLllL:l 1 1 ll]l“; il i uni i l—l—lLLll'L L Ilj.xui i1t
3 -5 5 -4 3 -6 -$ -4 -3
10 17 1 10 10 10 10
10 Frequency (Hz) 0 10 Frequency (Hz)

Goldstein et al., GRL, 22, 3393, 1995



Polar wind:
Spectral breakpoint, a comparison with

ecliptic wind polﬁwind

In the polar wind the -5
breakpoint is at smaller
scale than at similar
distances in the ecliptic '.";
wind. x
£
g

Helios

IMP 8
Thus, spectral evolution in \P1o

the polar wind is slower -7 \;
than in the ecliptic wind. Voyager

(data from: Helios, IMP, Pioneer, 8

Voyager, Ulysses) 0.1 AU 1 AU 10 AU

Solar distance

Horbury et al., Astron. Astrophys., 316, 333, 1996
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Polar wind: radial dependence of e* and e~

Ulysses polar wind

observations show that e* <
exhibits the same radial

gradient over all the
Investigated range of

distances. In contrast, e~
shows a change of slope at

~2.5 AU.

Perhaps, e~ generated by
some mechanism acting on
e* which saturates for a given

ratio of e-/ e*

}

Ulysses

10? |
0.3

R. Bruno, International Workshop and School
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Turbulence generation in the polar wind: parametric decay

The absence of strong velocity shears
plays in favour of the parametric decay
mechanism

This instability develops

in a compressible plasma and, in its

simplest form, involves

the decay of a large amplitude

Alfvén wave (called “pump wave”, Ky @
or “mother wave”) in a ] K,, o,
magnetosonic fluctuation Z

and a backscattered Alfvén wave.
energy & momentum conservation

0= O+ ®, ko= k;+k,

Kor ®g
z+

R. Bruno, International Workshop and School
Mamaia, Romania 6-13 September 2015 86




Test for parametric instability for ~1

MHD compressible simulation by L. Primavera o3

I | | 8 | | 1 | 1

=20 | | t=35 ||

non-monochromatic,
large amplitude Alfvén

i | wave experiencing

, — S parametric instability
=0 =01 creates backscattered

: fluctuations (e") and
compressive modes (er).

( Malara et al., 2001 NI.Proc in Geophys.)

(Simulation details in: Malara et al., JGR, 101, 21597, 1996, Malara et al., Phys. Plasmas, 7, 2866, 2000,
Primavera et al. in Solar Wind 10, 2003)



The parametric instability
for B~1

The decay ends in a state in which
the initial Alfvénic correlation is
partially preserved.

The predicted cross-helicity
behaviour qualitatively agrees with
that observed by Ulysses.
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Summary

O Solar wind is a turbulent medium (Re~10°> @1AU)

O Fast wind: radially evolving Alfvénic turbulence (predominance of outward
correlations)

O Slow wind: developed turbulence, no radial evolution (equal amount of outward
and inward correlations)

O We have a comprehensive, phenomenological view of the Alfvénic turbulence
evolution in the 3-D heliosphere.

O The dominant character of outward fluctuations in the polar wind extends to
larger distances from the Sun compared to the ecliptic

O polar turbulence evolution is slower than ecliptic turbulence.
O ecliptic evolution driven by velocity shear,
O polar evolution driven by parametric decay
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For those who want to know more about turbulence of the
interplanetary medium see the following review:

Roberto Bruno and Vincenzo Carbone,
“The Solar Wind as a Turbulence Laboratory”,
Living Rev. Solar Phys. 10 (2013), 2

http://solarphysics.livingreviews.org/Articles/Irsp-2013-2/
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Differences in the power associated to e and e”

Helios 2 @ 0.29 AU
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